
Proceedings of the 14th International Workshop on Semantic Evaluation, pages 1227–1232
Barcelona, Spain (Online), December 12, 2020.

1227

C1 at SemEval-2020 Task 9: SentiMix: Sentiment Analysis for
Code-Mixed Social Media Text using Feature Engineering

Laksh Advani and Clement Lu and Suraj Maharjan
Capital One

1600 Capital One Drive, McLean, VA
firstname.lastname@capitalone.com

Abstract

In today’s interconnected and multilingual world, code-mixing of languages on social media is
a common occurrence. While many Natural Language Processing (NLP) tasks like sentiment
analysis are mature and well designed for monolingual text, techniques to apply these tasks to
code-mixed text still warrant exploration. This paper describes our feature engineering approach
to sentiment analysis in code-mixed social media text for SemEval-2020 Task 9: SentiMix. We
tackle this problem by leveraging a set of hand-engineered lexical, sentiment, and metadata fea-
tures to design a classifier that can disambiguate between “positive”, “negative” and “neutral”
sentiment. With this model we are able to obtain a weighted F1 score of 0.65 for the “Hinglish”
task and 0.63 for the “Spanglish” tasks.

1 Introduction

Social media has grown exponentially in the last decade and has given rise to multilingual online com-
munication and the consumption of media. Code Mixing is the phenomenon of embedding linguistic
units such as phrases, words, or morphemes of one language into an utterance of another. Code mixing
is prevalent in online discourse, where bilingual speakers mix English with their native language. For
instance, bilingual speakers of Hindi and Spanish languages, which are the 3rd and 4th most spoken
languages in the world respectively, frequently mix English with Hindi and Spanish in spoken language
as well as online social media. The growing presence of “Hinglish” and “Spanglish” in social media is
evidence that this is a growing area of research as traditional NLP tasks like sentiment analysis heavily
rely on monolingual resources.

While there are many cutting edge techniques to apply common NLP tasks to monolingual text, the
task of sentiment analysis, in particular, has not been explored for multilingual code-mixed texts. Con-
ventional NLP tools make use of monolingual resources to operate on code-mixed text, which limits
them to properly handle issues like word-level code-mixing. Additionally, code-mixed texts typically
exist on social media which has a conjunction of other features like incorrect spelling, use of slang, and
abbreviations to name a few.

While code-mixing is an active area of research, correctly annotated data is still scarce. It is par-
ticularly difficult to mine a small subset of tweets that may or may not be code-mixed and then apply a
sentiment score to them. The organizers have solved this by releasing around 20,000 tweets (Patwa et al.,
2020) with unique sentiment scores and word-level tagging of the language. For evaluation and ranking,
the organizers used a weighted F1 score across “positive”, “negative” and “neutral” classes.

While deep learning techniques are state of the art for this task, the contribution of this paper is to
demonstrate how content-rich features, when applied to a classifier, can give us strong and comparable
results. Some of the features we explore are lexical features like n-grams, metadata features like word
frequency, and sentiment-based features like profanity count.

*Our codalab username is lakshadvani.
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.



1228

2 Related Work

Code-Mixed Sentiment Analysis is an active field of research. For monolingual sentiment analysis, Re-
current Neural Networks (RNN) and other more complex deep learning models have been successful.
Socher et al. (2013) gave us a significant breakthrough by using compositional vector representations.
With regards to Hindi-English Sentiment Analysis, the shared task SAIL-2015 (Patra et al., 2015) re-
ported accuracies of different systems submitted on sentiment analysis for tweets in three major Indian
languages: Hindi, Bengali, and Tamil. Recently Joshi et al. (2016) released a dataset sourced from
Facebook and proposed a deep learning approach to Hindi-English Sentiment extraction. A variety of
traditional learning algorithms like Naive Bayes, Support Vector Machines and Decision Trees were ap-
plied to this dataset. The winning algorithm from the SAIL-2015 shared task was a Naive Bayes based
system. More recent work by Hashimoto et al. (2017) involves a hierarchical multitask neural architec-
ture with the lower layers performing syntactic tasks, and the higher layers performing the more involved
semantic tasks while using the lower layer predictions.

3 Dataset

Word Word Tag
@ O
nsfw Hin
_ O
hs Hin
Maybe Hin
I’ll Eng
faing Eng
and Eng
I Eng
won’t Eng
feel Eng
a Eng
thing Eng
. O

Word Word Tag
Nobody Eng
can Eng
make Eng
gabby NE
laugh Eng
like Eng
I Eng
do Eng
, O
asta Es
parece Es
mongolita Es
lmao Eng

Table 1: Sample Annotation Examples for Hinglish and Spanglish Dataset

For the Hinglish dataset, the organizers have released a total of 20,000 manually labeled tweets with
14,000 being in the training dataset, 3,000 being part of the validation dataset and 3,000 being part of a
holdout test dataset. Additionally, for the Spanglish dataset, they released 12,002 tweets for the training
dataset, 2,998 tweets for the validation dataset and 3,788 tweets for the test dataset.

To ensure the accuracy of the dataset labels, the organizers employ a semi-automatic annotation
methodology. They initially use word-level identifiers and then baseline sentiment analysis to obtain
the initial labels. Subsequently, manual evaluation is done by at least two annotators, tweets with low
confidence are discarded. While this seems to be a robust system in some cases the word tags are incor-
rect with words like ’Maybe’ being tagged as a Hindi word, when we can safely assume that it is from
the English language. Additionally, the dataset contains URLs, hashtags, usernames and emoticons. The
average length for tweets in the “Hinglish” dataset is 26 tokens and 15 tokens for the “Spanglish” dataset.

Table 1 shows us two examples from the “Hinglish” and “Spanglish” datasets made available for this
task. For both subtasks the organizers provided labeled trial, train and validation datasets for developing
candidate models.

The data was provided in the CONLL format with each tweet having a sentiment of “positive”, “neg-
ative” or “neutral”. Figure 1 gives us an overview of the class distribution of these datasets. As we
can see the “Spanglish” dataset is unbalanced with the majority of the samples being in the “positive”



1229

and “neutral” datasets. From the examples in Table 1 we can see that the organizers have also provided
word level information, with the classes Eng (English), Es (Spanish), Hin (Hindi), mixed, and univ (e.g.,
universal symbols, @ mentions, hashtags).

positive negative neutral

2,000

4,000

6,000

4,634

4,102

5,264

6,005

2,023

3,974

#s
am

pl
es

Eng-Hin Eng-ES

Figure 1: Categorical Label Frequency in Hinglish and Spanglish Training Dataset.

4 Methodology

We extracted different hand engineered features like word n-grams, sentiment polarity, punctuation fre-
quency, word frequency, emoji frequency and profanity level from tweets. We weighed n-gram features
using their term frequency - inverse document frequency (TF-IDF) scores. We then built a Logistic
Regression classification model using Scikit-learn (Pedregosa et al., 2011) library.

4.1 Pre-processing
Prior to using the datasets we explored a variety of pre-processing techniques to reduce the noise in the
data as they are obtained from online social media and include additional textual features. We used the
following pre-processing techniques.

• Abbreviation Expansion: In many cases users on online social media tend to use informal slang
and abbreviations. For instance, we expanded common abbreviations like “DM” to “direct message”
using the Python regular expression library.

• Repetition: As communication on social media websites is informal, there are cases where letters
in words are repeated such as “heelloo”. We normalize these words by using the Python regular
expressions library.

• Usernames and Handles: We use the Python regular expression library to develop a manually
defined function to remove user handles for example (@Matt), URLs (https:twitter.com)
and similar links to external images.

4.2 Hand-crafted Features
We explored and used different hand-crafted features to build our machine learning model. Our hand-
crafted features are described below:

• Lexical Features: We extracted word n-grams (n = 1, 2, 3) from the tweets as they are strong
lexical representations (Cavnar et al., 1994; McNamee and Mayfield, 2004; Sureka and Jalote,
2010). A word n-gram is simply a sequence of n words, for example “hello again” is a bi-gram or
2-gram.

• Sentiment Lexicon Features: We extracted the sentiment polarity for English language tokens
using Valence Aware Dictionary and sEntiment Reasoner (VADER) (Hutto and Gilbert, 2015).



1230

VADER is a lexicon and rule-based sentiment analysis tool that is specifically attuned to sentiments
expressed in social media. This feature provides strong clues about the sentiment of the tweets by
explicitly discriminating “positive” or “negative” words in the tweet.

• Emoji Features: Emoji are frequently used in online discourse and give us a hint about the tone
of the tweets. We used a rule-based dictionary to formalize their polarity as “happy”, “sad”, and
“neutral”. We constructed this lexicon using the Emoji Sentiment Ranking (Kralj Novak et al.,
2015).

• Profanity Features: Profane words are correlated with negative connotations. We used the presence
or absence of profane words as a feature to discriminate between the three classes.

• Tweet Metadata Features: Finally we looked into using metadata about the tweet. We extracted
repetition, punctuation count, and length and used them as features.

4.3 Experimental Setup
We used the training and validation splits for Spanglish and Hinglish datasets to build our final classifier.
We experimented with standard machine learning classifiers like Logistic Regression, Support Vector
Machines, Random Forests with our hand-crafted features defined in Section 4.2. We tuned the C hyper-
parameter of the Logistic Regression and Support Vector Machine using an extensive grid search over
the range of values {10e−2, . . . , 10} on the validation dataset. For our final model, we used the best
hyperparameter value on the validation dataset. After a number of trials by using a step size of 0.01 we
found that 0.9 was the best value to use as it gave us the best results. Additionally, based on the size and
type of the data we selected the “Liblinear” solver, which works in a one vs. rest fashion for multi-class
tasks.

Moreover, we ran experiments using deep learning models. For deep learning models, we used
BERT (Devlin et al., 2019), ELMo (Peters et al., 2018), and GloVe (Pennington et al., 2014) embeddings
to initialize the embedding layer, Bidirectional Gated Recurrent Units (Cho et al., 2014) for sequence to
sequence encoding, and used self-attention (Lin et al., 2017) to reduce the sequence of encoded vectors
to a single vector for representing the tweet. The tweet representations were then used for classification.
Additionally, we used the Adam optimizer to train our deep neural network. To select our top candidate
we evaluated these models based on the F1 score.

5 Results and Analysis

Model Hinglish F1 Score Spanglish F1 score

Logistic Regression 0.58 0.55
Support Vector Machines 0.49 0.50
Feed-forward Networks 0.56 0.53
Random Forest 0.48 0.46
BERT Language Model 0.56 0.48
GloVe + ELMo Language Model 0.56 0.54
Organizer Baseline 0.58 0.49

Table 2: Model Results for Hinglish and Spanglish Validation dataset

Table 2 shows us the results of a variety of classification models applied to the Hinglish and Spanglish
validation datasets. As we can see the “Logistic Regression” model performed the best giving us a
F1 score of 0.58 for the Hinglish validation dataset and 0.55 for the Spanglish validation dataset. It is
interesting to see that the use of traditional hand-engineered features performed better than the state of
the art deep learning approaches. We suspect that the limited amount of data negatively affects deep
learning approaches and makes it conducive to use linear classification models. As a result, we chose to
use the “Logistic Regression” classifier on the final dataset.



1231

After the release of the test dataset, we merged the training dataset with the validation dataset and
trained our model with the best hyperparameters. For the Hinglish test dataset, we got a significantly
higher score of 0.65, which matches the organizer baseline of 0.65. Additionally, for the Spanglish
dataset, we got a score of 0.63 which is a lower than the organizer baseline of 0.65.

5.1 Error Analysis

Text Gold Prediction

Kameeny loogo ko justice system sy wessy he nikal deena chah-
eye khud dafa hona bhi theek hy .

Negative Negative

Dear all of every one so I am help you me Vishnu Sharma gwalior
madhyapradesh se hoo My mere teen better he Jo.

Positive Positive

‘bht moody ho aajkal . hope all is well Negative Neutral
‘receptionist sit wherever you ’ d like me thank you I ’ ll be in my
car’

Neutral Neutral

I’m poor poor-ever happy kase God is with Negative Positive
Table 3: Sample Predictions from the Hinglish Validation Dataset

Table 3 shows us some of the label predictions from the dataset. In many cases, words associated with
profanity and emoticons help the model decide between classes like positive and negative but these do
not help the model distinguish between “neutral” and “positive” or “negative” tweets as we do not have
a list of words specific to a “neutral” class. As we can see in the third row in Table 3 our model gives us
an insight into incorrectly classified results. The model gives us a prediction of “Neutral” where the true
label is “Negative”. As seen in the last row of Table 3 when the tweet is ambiguous the emoji contributes
significantly to the prediction. In this case, our prediction is “Positive” but the gold label is “Negative”.
We suspect the presence of emoji with positive polarity signaled the model to predict “Positive” label.
While this is an incorrect prediction we can perhaps infer that the dataset has incorrectly labeled samples.

6 Conclusions and Future Work

In this paper, we demonstrated our system for performing sentiment analysis on code-mixed tweets. We
used a variety of lexical, metadata, and sentiment-based features. We used a Logistic Regression Clas-
sifier with these features to classify the tweets as “positive”, “negative” and “neutral”. We demonstrate
how a lightweight and memory-efficient model with prior extracted features can be competitive with
state of the art Language Models. In the future, we would look into combining hand-engineered lexical,
sentiment, and metadata features with the representations learned from Convolutional Neural Networks
(CNN) and Bidirectional Gated Recurrent Unit (Bi-GRU) having attention model applied on top (Kar
et al., 2017). Recent developments in NLP research have pointed to the combination of deep learning
representations as a strong approach to gain better results.

References
William B Cavnar, John M Trenkle, et al. 1994. N-gram-based text categorization. In Proceedings of SDAIR-94,

3rd annual symposium on document analysis and information retrieval.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase representations using RNN encoder–decoder for statistical machine
translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1724–1734, Doha, Qatar, October. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirec-
tional transformers for language understanding. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pages 4171–4186, Minneapolis, Minnesota, June. Association for Computational Linguistics.



1232

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsuruoka, and Richard Socher. 2017. A joint many-task model:
Growing a neural network for multiple NLP tasks. In Proceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1923–1933, Copenhagen, Denmark, September. Association for
Computational Linguistics.

C.J. Hutto and Eric Gilbert. 2015. Vader: A parsimonious rule-based model for sentiment analysis of social media
text. 01.

Aditya Joshi, Ameya Prabhu, Manish Shrivastava, and Vasudeva Varma. 2016. Towards sub-word level compo-
sitions for sentiment analysis of Hindi-English code mixed text. In Proceedings of COLING 2016, the 26th
International Conference on Computational Linguistics: Technical Papers, pages 2482–2491, Osaka, Japan,
December. The COLING 2016 Organizing Committee.

Sudipta Kar, Suraj Maharjan, and Thamar Solorio. 2017. RiTUAL-UH at SemEval-2017 task 5: Sentiment anal-
ysis on financial data using neural networks. In Proceedings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 877–882, Vancouver, Canada, August. Association for Computational Lin-
guistics.

Petra Kralj Novak, Jasmina Smailović, Borut Sluban, and Igor Mozetič. 2015. Sentiment of emojis. PLOS ONE,
10(12):1–22, 12.

Zhouhan Lin, Minwei Feng, Cícero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua Bengio.
2017. A structured self-attentive sentence embedding. In ICLR (Poster). OpenReview.net.

Paul McNamee and James Mayfield. 2004. Character n-gram tokenization for european language text retrieval.
Information Retrieval, 7(1-2):73–97.

Braja Gopal Patra, Dipankar Das, Amitava Das, and Rajendra Prasath. 2015. Shared task on sentiment analysis in
indian languages (sail) tweets - an overview. In Rajendra Prasath, Anil Kumar Vuppala, and T. Kathirvalavaku-
mar, editors, Mining Intelligence and Knowledge Exploration, pages 650–655, Cham. Springer International
Publishing.

Parth Patwa, Gustavo Aguilar, Sudipta Kar, Suraj Pandey, Srinivas PYKL, Björn Gambäck, Tanmoy Chakraborty,
Thamar Solorio, and Amitava Das. 2020. Semeval-2020 task 9: Overview of sentiment analysis of code-mixed
tweets. In Proceedings of the 14th International Workshop on Semantic Evaluation (SemEval-2020), Barcelona,
Spain, December. Association for Computational Linguistics.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove: Global vectors for word representa-
tion. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 1532–1543, Doha, Qatar, October. Association for Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettle-
moyer. 2018. Deep contextualized word representations. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long Papers), pages 2227–2237, New Orleans, Louisiana, June. Association for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and Christopher
Potts. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings
of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1631–1642, Seattle,
Washington, USA, October. Association for Computational Linguistics.

Ashish Sureka and Pankaj Jalote. 2010. Detecting duplicate bug report using character n-gram-based features.
pages 366–374, 11.


