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Abstract

Downstream effects of biased training data have become a major concern of the NLP community.
How this may impact the automated curation and annotation of cultural heritage material is cur-
rently not well known. In this work, we create an experimental framework to measure the effects
of different types of stylistic and social bias within training data for the purposes of literary clas-
sification, as one important subclass of cultural material. Because historical collections are often
sparsely annotated, much like our knowledge of history is incomplete, researchers often can-
not know the underlying distributions of different document types and their various sub-classes.
This means that bias is likely to be an intrinsic feature of training data when it comes to cultural
heritage material. Our aim in this study is to investigate which classification methods may help
mitigate the effects of different types of bias within curated samples of training data. We find
that machine learning techniques such as BERT or SVM are robust against reproducing certain
kinds of social and stylistic bias within our test data, except in the most extreme cases. We hope
that this work will spur further research into the potential effects of bias within training data for
other cultural heritage material beyond the study of literature.

1 Introduction

One of the challenges facing researchers working with cultural heritage data is the difficulty of producing
historically representative samples of data (Bode, 2020). While we have access to very large collections
of digitized material (e.g. Hathi Trust, Gale), we often lack knowledge about the distributions of differ-
ent types of documents and their stylistic qualities within these collections (not to mention within the
broader sweep of history more generally). Researchers aiming to build collections for historical study
using automated methods are thus faced with a two-part challenge: first, the collection of reliable training
data given the absence of annotated data within larger collections; and second, the mitigation of poten-
tially unknown biases within such training data when scaling to the classification of larger historical
collections.

In this work, we attempt to measure the effects of such potential unknown biases within training data
for the purpose of literary classification by testing cases of known bias. In essence, we want to simulate
the following scenario. A researcher wishes to construct a large sample of historical documents from
within a given heritage repository using automated methods. Because there is no consistently annotated
data for her purposes, she constructs a small training data sample by hand based on her domain expertise,
either by randomly sampling from the larger collection or building around some prior disciplinary con-
sensus. As she moves to implement a process to automatically classify documents based on her training
data, she is left with a fundamental uncertainty: Because the underlying distribution of different stylistic
and social features of the data within the larger collection are unknown, and given that her sample repre-
sents a tiny fraction of all documents, how confident can the researcher be that whatever biases may be
present in the training data will (not) be reproduced in the subsequent automated annotations?

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http:
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To model this scenario, we work with a collection of data in which the underlying distributions of
stylistic and social features are known and then test a variety of cases of increasing bias within the
training data to measure its effects on the test data. We assess three separate forms of stylistic and
social bias, which include genre, dialogue, and authorial gender, as well as a variety of classification
techniques, including the use of data augmentation, to identify conditions under which the reproduction
of bias is minimized. In all cases, the goal of our classification task is the detection of fiction from
a larger collection of documents. The identification of fictional or “literary” documents within large
historical collections is a pressing need for the field of literary studies and has been taken up in several
cases (Underwood et al., 2020; Underwood, 2014; Bode, 2020). As yet, however, no assessment has
been made of the potential effects of bias within the training data used for such annotation exercises.

As we discuss in detail in Section 5, we surprisingly find that current state-of-the-art techniques in
NLP such as BERT (Devlin et al., 2019) (or even SVMs) are robust against reproducing all three kinds
of bias within our test data, except in the most extreme cases. One bias in particular, authorial gender,
appears to exhibit no effect at all in classification tasks, even under the most extreme circumstances.

2 Related Work

2.1 Bias in NLP

Numerous studies in recent years have analyzed different kinds of biases in NLP systems. They span
a wide variety of NLP tasks such as abusive language detection (Sap et al., 2019), language modeling
(Lu et al., 2018), learning word embeddings (Bolukbasi et al., 2016; Caliskan et al., 2017), and machine
translation (Vanmassenhove et al., 2018), among others. For example, Sap et al. (2019) find that African
American English tweets are twice as likely to be labelled offensive compared to others, demonstrating
racial bias in hate speech detection systems, while Bolukbasi et al. (2016) and Caliskan et al. (2017)
show that word embeddings trained on popular datasets strongly exhibit gender stereotypes. In each of
these cases, research demonstrates that biases encoded in the training data used for automated detection
tasks is reproduced in NLP outputs.

Recent work by Blodgett et al. (2020) has emphasized that in light of the numerous ways “bias” has
been interpreted and studied in the literature that researchers explicitly state both their working under-
standing of bias and also the concrete social harms that can follow from bias in NLP. Our concern in
focusing on text classification for cultural heritage materials is designed to address the problem of his-
torical representation and the role that automated systems play in the construction of our understanding
of the past. Biases in training data could lead to misleading representations of the past, which could
in turn lead to “harms of representation” identified by Blodgett et al. (2020) with respect to different,
often historically marginalized social groups. For example, training data that does not adequately re-
flect women’s participation in the production of literature could in turn generate historical samples that
severely under-represent women’s role in the history of literature. Similar concerns could be raised about
racial, ethnic, or regional identities. Moreover, Zadrozny (2004) show that some machine learning clas-
sifiers are affected by the problem of sample selection bias, that is, when the training data consist of
randomly drawn samples from a different distribution than the test data about which the learned model
is expected to make predictions.

2.2 Data Augmentation for NLP

Due to the lack of large-scale and reliably annotated data in historical collections, many researchers will
necessarily have to begin with manually collected training data, which in most cases constrains the size
and diversity of training data.

Data augmentation has been proposed as a strategy to help train more robust models by improving the
quantity and quality of training data. It is commonly and effectively used in the domains of computer
vision (Krizhevsky et al., 2017), speech (Cui et al., 2015), and is now being explored for NLP tasks
(Wei and Zou, 2019). To date, no work has experimented with data augmentation for the task of literary
classification. Here, we experiment with two forms of data augmentation: (1) the Easy Data Augmen-
tation (EDA) model that has been shown to provide performance gains across five classification tasks
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(Wei and Zou, 2019), and (2) a hand-engineered model consisting of augmentation techniques such as
back-translation (Yu et al., 2018), crossover (FM, 2019), and substituting proper names (Section 3.3).

2.3 Literary Text Classification
Within the larger field of text classification, very few studies have experimented with optimizing clas-
sification within the literary domain. Yu (2008) implement naive bayes and support vector machines
(SVMs) for two literary classification tasks. Allison et al. (2011) show that compute algorithms and dig-
ital methods can be successfully used to build predictive models (if not explanatory models) for literary
genres. More recently, Underwood et al. (2020) released a large collection of volumes that were pre-
dicted to be fiction through algorithmic modeling. They implement regularized logistic regression using
a feature set that consists of unigrams (words) along with a few structural features. Our work provides
further understanding of the relationship between classifiers and the prediction of literary documents.

3 Methodology

The goal of our experiments is to test the effects of bias in training data on the classification of test
data belonging to the domain of literature. For our purposes, following the work of Underwood et al.
(2020), we attempt to predict whether a document is a work of “fiction” within a binary classification
task (fiction/non-fiction) and modulate different stylistic features, which we describe in Section 4. In
this section, we describe the dataset followed by the classification algorithms used along with the data
augmentation techniques applied to the training data.1

3.1 Dataset
The data used in this paper consists of 866 digitized works of “bestselling” contemporary writing accord-
ing to Amazon.com and published between 2000 and 2016 (Piper and Portelance, 2016). The breakdown
of works are based on Amazon’s genre tags and include: 200 works of non-fiction, comprised of a variety
of sub-genres including history, biography, policy, self-help, etc.; 235 works of “Mystery” novels, 220
works of “Science Fiction,” and 211 “Romance” novels. All works were selected based on their ranking
within the “bestselling” sorting mechanism on Amazon and reviewed by hand for genre appropriateness.

3.2 Classification Algorithms
We experiment with a diverse set of classification algorithms using both traditional machine learning and
deep learning for this supervised learning task.

Traditional Machine Learning. We implement the following learning algorithms that are commonly
used for classification: Logistic Regression, Support Vector Machines (SVM), Random Forests and Gra-
dient Boosting Classifier (GBC). A crucial aspect of the text classification pipeline is feature representa-
tion. We represent the input text as a bag of word n-grams which is one of the most simple yet effective
methods for feature vectorization. We experiment with unigrams, bigrams, trigrams and all three word
n-grams combined, and pick the one which yields the best performance in a 5-fold cross validation test.
Simultaneously, we perform cross-validated hyperparameter tuning for each of our learning algorithms.
The algorithms and features are implemented using the scikit-learn library (Pedregosa et al., 2011).

Deep Learning. Deep learning models have achieved state-of-the-art results in many text classification
tasks (Minaee et al., 2020). In this work, we implement a number of deep learning models: Convolu-
tional Neural Networks (CNN), Long Short-Term Memory Networks (LSTM), Bi-directional LSTM,
and Stacked Bi-directional LSTM. For the input embedding layer to the network, we experiment with:
(1) using static pre-trained GloVe embeddings (Pennington et al., 2014), (2) using the dynamic deep
contextualized ELMo representations (Peters et al., 2018) which utilizes transfer learning. We use the
cross entropy loss function and Adam optimizer (Kingma and Ba, 2014) for learning network weights.

Recently, many transformer-based models have been proposed in the field that have outperformed all
other learning models on several NLP tasks including text classification. We implement two such models

1We make our code and metadata publicly available at https://github.com/sunyam/bias-literary-classification.
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EDA CDA

1. Synonym Replacement: Replace N random words
from the sentence with one of their synonyms.

1. Crossover: generates new instances by swapping
halves of two instances with the same label
(inspired by genetic algorithm’s crossover).

2. Random Insertion: Insert a random synonym of a
random word in the sentence at a random position

in the sentence. Do this N times.

2. Back-translation: generates paraphrases of the
input (English) text by translating it to another

language and translating it back to English. We use
four languages – French, Korean, German, Spanish.

3. Random Swap: Randomly choose two words
in the sentence and swap their positions.

Do this N times.

3. Proper Names: We generate two new instances by:
(1) deleting all proper names in the input text;

(2) substituting all proper names with random names.
4. Random Deletion: Randomly remove each word

in the sentence with probability p.

Table 1: Data augmentation techniques implemented in this work. As recommended by Wei and Zou
(2019), we generate 16 instances per training instance for both EDA and CDA (N = 25 and p = 0.05).

here: Bidirectional Encoder Representations for Transformers (BERT) (Devlin et al., 2019) and XLNet
(Yang et al., 2019). More specifically, we first load these large pre-trained models and fine-tune them on
our literary classification task. The deep learning models are implemented using PyTorch (Paszke et al.,
2019), AllenNLP (Gardner et al., 2017) and Transformers (Wolf et al., 2019) libraries.

3.3 Data Augmentation

The shortage of labeled training data is a major concern for many supervised learning tasks since data
annotation is a time-consuming and expensive process. This has led to the idea of data augmentation
which refers to increasing the size and diversity of training data without actually collecting new data.
In this work, we implement two sets of data augmentation techniques: Easy Data Augmentation (Wei
and Zou, 2019) and a set of other techniques we group under the name Custom Data Augmentation
(CDA). They are presented in Table 1. Note that we use the Google Translate API2 for back-translation;
for proper names, we use the Stanford Named Entity Recognizer (Finkel et al., 2005) to locate them in
the text and NameDatabases3 for sampling random names. Additionally, we also merge EDA and CDA
where 8 augmented instances are generated using the former and 8 using the latter.

4 Experiment Design

In this section, we introduce our experimental setup to test the robustness of the classifiers when pre-
sented with different forms of bias in the training data, grouped into the following three categories: genre,
dialogue, and gender. Our research question is which classification techniques (if any) mitigate different
types of known biases in the training data when it comes to accurately classifying test documents?

In all cases, we hold our test set constant and then manipulate our training data according to different
kinds of stylistic and social features described below, and evaluate each model’s performance. We begin
by establishing a baseline where the distribution of the feature of interest (e.g. genre, dialogue, gender) is
the same for both the train and test sets. We then gradually distort the training data and measure observed
declines in model performance using the evaluation metrics described below. The size of the training
data remains constant throughout: 200 fiction and 200 non-fiction documents.4 A “document” refers to a
500-word passage randomly sampled from a single work. When sampling passages, we condition on the
middle 40% of the work in order to avoid paratext at the beginning or end of a work. Additionally, we

2https://py-googletrans.readthedocs.io/
3https://github.com/smashew/NameDatabases
4With the exception of Uniform-Genre experiment where we use 201 fiction documents, 67 from each genre.
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experiment with using longer passages from these volumes (up to 10,000 words) as described in Section
5. Finally, we sample no more than 1-3 passages per work for each scenario.

4.1 Genre
An important characteristic of fictional documents is the way they consist of a variety of sub-types, one
aspect of which can be captured through the notion of “genre.” While the term genre can be interpreted in
different ways, we use it here to mean stylistic distinctions among literary documents that have a strong
“thematic” orientation. Genres such as “mystery,” “science fiction,” or “romance,” address significantly
different real-world scenarios, which may affect the nature of characterization, narrative voice, or event-
types. Research has shown that such generic distinctions exhibit a strong degree of categorical difference
from the perspective of machine learning (Underwood, 2016; Piper and Portelance, 2016).

We thus hypothesize that training data that is biased with respect to genre may produce biased repre-
sentations when it comes to the prediction of test data. If a researcher generated (unknowingly) a training
data sample based mostly or only on science fiction, for example, would this training data produce predic-
tions that were 1) less accurate with respect to the broader fiction category and 2) less equally distributed
among other kinds of genres within the category of fiction (i.e. biased towards science fiction)?

Train-Set Scenarios. This experiment is broken down into four training data scenarios listed below.

1. Uniform: We keep the fiction train-set uniformly distributed across the three genres, where the
fiction set consists of 1/3 Mystery, 1/3 Romance and 1/3 SciFi passages. This scenario corresponds
to the red dot in Figure 1.

2. Genre-Dominated: For each genre, we begin with 50% of the training data being dominated by that
genre and increase the genre dominance by 10% until the entire training set consists of a single
genre (i.e. 100%). The other two genres are split evenly for each scenario.

Test Set. We keep the test set static across the four scenarios: 99 non-fiction documents and 99 fiction
documents equally distributed across the three genres (similar to Scenario 1).

4.2 Dialogue
While there are no systematic studies on the prevalence and distinctiveness of dialogue within fiction
(whether over time or by genre), narrative theory suggests that the emphasis or avoidance of dialogue
by writers indicates an important quality of fictional narrative (Genette, 1983). As a representation of
oral speech, dialogue captures a distinctive stylistic quality of fictional documents that strongly departs
from the linguistic norms and codes of narration and description (Bal, 2017). We thus hypothesize
that imbalances with respect to the underlying distribution of dialogue within training data will pose
challenges for the accurate prediction of fiction and may bias future samples from adequately capturing
the underlying distribution of dialogue within a specific sub-domain of fiction.

Sampling. To create our sample of documents, we first process all documents using BookNLP (Bam-
man et al., 2014) which allows us to identify words that appear in dialogue. We then divide passages into
two groups: “with dialogue” and “no dialogue.” To select passages with dialogue, we condition on all
passages with dialogue from each work and keep the top two passages in terms of percentage of quoted
words. Doing so, we observe that the average percentage of quoted words in our “with dialogue” sample
is 81.2%. To select passages with no dialogue, we sample passages that have zero quoted words. We
only sample from the Mystery novels to control for the effects of genre.

Train-Set Scenarios. For our training scenarios, we begin with a train set consisting of 0 fiction pas-
sages with dialogue and gradually increase the number of passages with dialogue to 10%, 20%, 30%, ...
up until 100%. As with the genre experiments, non-fiction data is kept constant.

Test Set. The test set is kept static across all train-set scenarios. It contains 100 non-fiction passages
and 100 fiction passages where 50 passages are drawn from our “with dialogue” sample and 50 from the
“no dialogue” sample.
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4.3 Authorial Gender
A great deal of work in the NLP community as well as literary studies has focused on problems of
gender bias when it comes to the use of word embeddings (Caliskan et al., 2017; Bolukbasi et al., 2016),
classification techniques (Mandell, 2019), and modeling more generally (Bode, 2020). Empirical work
has demonstrated that gender represents an important form of social inequality within the literary realm
(Underwood et al., 2018; Weinberg and Kapelner, 2018; Kraicer and Piper, 2019). It is thus imperative
to develop methods of data curation that do not reproduce or amplify such historical inequalities. In
this set of experiments, we explore the effects that biases with respect to authorial gender might have on
predictive accuracy and balance when it comes to classifying works of fiction. We manually annotate
our gender assignments based on identified gender via the author’s public biography. While we found
no non-binary authors in our study, it is important to acknowledge that the binary labels we use here
are for heuristic purposes of identifying potential bias and are not designed to capture a more diverse
understanding of gender. In order to control for the effects of genre, we once again only sample from the
Mystery novels.

Train-Set Scenarios. As with our dialogue experiments, we begin with 0% men novelists where all
passages of fiction are written by women authors and gradually increase the number of fiction passages
written by men to 10%, 20%, 30%, ..., until 100%.

Test Set. Consistent with our other experiments, we use a static test set with 100 non-fiction passages
and 100 fiction passages with 50% of fiction written by men and 50% by women.

4.4 Evaluation
In order to assess the effects of bias within our training data, we evaluate our classifiers across the
following two dimensions. In all cases, we compare performance with respect to a baseline where the
distributions in the train and test sets mirror each other.

• Accuracy: We report standard performance metrics such as F1-score, accuracy, precision, and recall
to address the question: did the increase of bias result in a decline of overall predictive accuracy?

• Balance: Our second evaluation goal is to capture distortions in the positive predictions for each of
our scenarios. Here we are asking whether an increase in bias in training data leads to an increase
in imbalanced sub-classes within our overall class of fiction. When a classifier is trained largely
on a single genre or presence of dialogue or gender, is it able to equally identify fiction that does
not belong to that genre, level of dialogue or gender? This is in many ways the more important
measure for our purposes because it allows us to see how biased training data impacts the underlying
distribution of a feature of interest. Will biased training data produce biased samples? To measure
this, we report the relative entropy of the true positives for a given classification task. An entropy
of 0 would mean that there is no class imbalance produced among the different sub-types of fiction
tested, while higher entropy indicates greater skew towards a single sub-type. Table 2 indicates the
relationship between entropy scores and class imbalances for the genre experiment.

5 Results and Discussion

5.1 Classifier Performance
Which classifiers perform best at our task of literary classification? In order to systematically com-
pare performance, we start by implementing all classifiers for the Uniform Genre experiment setting. The
classification metrics and relative entropy for a diverse set of classifiers and augmentation techniques are
shown in Table 2.5 As expected, transformer-based models perform very well on this task with BERT
outperforming all other classifiers by at least 2 or more F1 points. Convolutional Neural Networks that
utilize transfer learning through ELMo embeddings (F1 = 0.9) perform much better than their GloVe
embeddings counterpart (F1 = 0.87).

5Due to space constraints, we only present a subset of the top performing classifiers here. Specifically, Random Forest,
GBC, and LSTM-based models did not perform well on this task and are not shown in Table 2.
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Classifier F1-score Precision Recall Accuracy True-Positives Distribution Relative Entropy
BERT 0.9394 0.9394 0.9394 0.9394 {mys: 0.3226, sci: 0.3333, rom: 0.3441} 0.00034

BERT + EDA 0.9333 0.9479 0.9192 0.9343 {rom: 0.3516, mys: 0.3187, sci: 0.3297} 0.00083
XLNet 0.9175 0.9368 0.899 0.9192 {rom: 0.3596, mys: 0.3034, sci: 0.3371} 0.00241

CNN (ELMo) + EDA 0.91 0.8571 0.9697 0.904 {sci: 0.3438, rom: 0.3438, mys: 0.3125} 0.00099
LogReg + EDA 0.9029 0.8692 0.9394 0.899 {sci: 0.3333, mys: 0.3333, rom: 0.3333} 0.0

SVM + EDA and CDA 0.9009 0.8835 0.9192 0.899 {sci: 0.3516, mys: 0.3077, rom: 0.3407} 0.00158
CNN (ELMo) 0.9005 0.8482 0.9596 0.8939 {rom: 0.3474, sci: 0.3368, mys: 0.3158} 0.00078
SVM + EDA 0.8986 0.8611 0.9394 0.8939 {sci: 0.3333, mys: 0.3333, rom: 0.3333} 0.0
BERT + CDA 0.898 0.9072 0.8889 0.899 {rom: 0.3636, mys: 0.3182, sci: 0.3182} 0.00203

LogReg + EDA and CDA 0.8955 0.8824 0.9091 0.8939 {sci: 0.3333, mys: 0.3222, rom: 0.3444} 0.00036
SVM 0.891 0.8393 0.9495 0.8838 {rom: 0.3298, sci: 0.3404, mys: 0.3298} 0.00011

LogReg 0.89 0.8455 0.9394 0.8838 {rom: 0.3333, sci: 0.3333, mys: 0.3333} 0.0
LogReg + CDA 0.8768 0.8558 0.899 0.8737 {mys: 0.3146, rom: 0.3483, sci: 0.3371} 0.00088

SVM + CDA 0.875 0.8349 0.9192 0.8687 {mys: 0.3187, rom: 0.3516, sci: 0.3297} 0.00083
CNN (GloVe) 0.8732 0.8158 0.9394 0.8636 {rom: 0.3548, sci: 0.3226, mys: 0.3226} 0.00102

Table 2: Performance of classifiers across the two dimensions for Genre (Uniform) experiment. Note that
both train and test set are uniformly distributed across genres, and Relative Entropy is calculated between
the True-Positives distribution and the test-set distribution {mys: 0.333, sci: 0.333, rom: 0.333}.

The traditional learning models – SVM and Logistic Regression – achieve somewhat comparable F1-
scores of 89%. Moreover, these algorithms are the only ones to achieve a perfect entropy score of 0. It
is worth mentioning, however, that BERT’s entropy score of 0.00034 also yields a TP-distribution that is
extremely close to the ideal test-set distribution.

Does Data Augmentation Help? We observe marginal performance gains of about 1 F1-point with
EDA for Logistic Regression, SVM, and CNN. However, the performance drops by 0.6% for BERT. Our
Custom Data Augmentation (CDA) technique does not improve the F1-score for any of the classifiers.
From these empirical observations, we conclude that the augmentation techniques implemented in this
work do not provide significant performance gains for this classification task on our data.

Passage-Length. In addition to 500-word passages, we experiment with using longer passages – 1,000
to 10,000 words – from these volumes. We find that SVM’s F1-score goes up from 0.891 when using
500 words to 0.955 with 10,000 words.6 The peak is achieved at 5,000 words with an F1-score of 0.959.

Given these findings, we continue our bias analysis only implementing BERT and SVM without any
data augmentation for all subsequent experiments using 500-word passages.

Figure 1: BERT’s performance across the two evaluation-dimensions on the Genre experiments.

5.2 Bias Analysis

Genre Bias. Figure 1 shows BERT’s performance according to both F1 score (left) and relative entropy
(right) for the three different scenarios where a given genre dominates the training data by increasing

6Note that BERT’s performance stays approximately constant at 0.94 since the pre-trained model’s max length is restricted
to 512 tokens. This is because the model learns positional-embeddings with sequence lengths of up to 512 tokens only.
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Figure 2: BERT and SVM’s performances across the two dimensions on the Dialog experiments.

Figure 3: BERT and SVM’s performances across the two dimensions on the Gender experiments.

amounts. We can see that when training data and test data mirror each other, BERT achieves an F1-
score of 0.939 and an almost-perfect entropy score of 0.00034 (red dot). As we introduce more genre
imbalance, we see little performance decrease until 90% imbalance has been achieved. When the train-
set is 100% Romance, the F1-score goes down 5 points to 0.89 and the relative entropy goes up to
0.00585 which corresponds to a TP-distribution that is slightly biased towards romance: {sci: 0.296,
rom: 0.383, mys: 0.321}. SVM also exhibits a similar trend7 (not shown here) with its entropy going up
to 0.04 where 43% of the True Positives belong to romance. In sum, BERT appears to be robust against
genre biases as long as training data is not biased upwards of 90% for a single genre.

Dialogue Bias. Figure 2 shows both SVM and BERT’s performance when we change the distribution
of fiction passages with dialogue in the training set. Both classifiers’ performance is stable across both
dimensions except for the most extreme case (i.e. 100% of the train-set has dialogue or no dialogue).
Somewhat surprisingly, as long as a classifier does not learn that fiction only consists of dialogue (or the
opposite), it should not condition on types of fiction with a differential preference for dialogue.

Gender Bias. The findings of this experiment are presented in Figure 3. As can be seen, both BERT
and SVM’s performance is relatively stable and constant across F1-score and relative entropy. Unlike
the other two experiments’ findings, this holds true even for the most extreme cases of authorial gender
imbalance in the train-set. While there appears to be an asymmetry with respect to gender bias - training
data of all women authors will produce more imbalance than training data with all men - the relative
entropy (of 0.0037) corresponds to an imbalance of 45.6% men and 54.4% women even in the most
extreme case.

6 Conclusion

In this paper, we have tested different classifiers, different data augmentation techniques, and differ-
ent forms of training data bias to assess their effects on the task of literary classification. Overall, we

7In fact, this trend is consistent across all different passage lengths we experimented with. Due to space constraints, the rest
of the plots are provided in the GitHub repository.
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have found that BERT is the best-performing classifier with SVMs comparable with text-passages above
5,000 words in length. Data augmentation as we have implemented it provides little performance gain.
Finally, the stylistic and social biases tested here exhibit little effect except in the most extreme cases
(> 90% bias for a given category) suggesting that at least for the purposes of literary text classifica-
tion, underlying biases in training data are not as impactful as researchers have initially hypothesized.
Nevertheless, our work is limited in its historical scope (different historical periods may exhibit differ-
ent effects), cultural specificity (our effects have only been observed on English-language documents),
classification task (other types of classification may perform differently), and stylistic breadth (stylistic
features important to other domains or research questions may behave differently). It is also important
to emphasize that while classifiers can mitigate the propagation of bias within training data scenarios
(up to a point and under certain conditions), they cannot address biases built into the underlying digital
collections from which new collections are created (Bode, 2020). We hope that these experiments pro-
vide a useful framework for further refining our understanding of the effects of bias on multiple forms of
cultural classification. Future work will want to test different classification scenarios, types of stylistic or
social bias, multiple linguistic contexts, as well as further historical document types to better understand
how unknown biases in training data may impact our representation of the past using digital collections.
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