
Proceedings of the 16th Joint ACL-ISO Workshop Interoperable Semantic Annotation (ISA-16), pages 36–48
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

36

Annotation-based Semantics

Kiyong Lee
Korea University

Seoul, Korea
ikiyong@gmail.com

Abstract
This paper proposes a semantics ABS for the model-theoretic interpretation of annotation structures. It provides a language ABSr that
represents semantic forms in a (possibly λ-free) type-theoretic first-order logic. For semantic compositionality, the representation
language introduces two operators ⊕ and � with some subtypes for the conjunctive or distributive composition of semantic forms.
ABS also introduces a small set of logical predicates to represent semantic forms in a simplified format. The use of ABSr is illus-
trated with some annotation structures that conform to ISO 24617 standards on semantic annotation such as ISO-TimeML and ISO-Space.

Keywords: annotation structure, semantic forms, logical predicates, conjunctive or disjunctive composition

1. Introduction
This paper has two aims: [i] to formulate a semantics,
called Annotation-based Semantics (ABS), for the model-
theoretic interpretation of annotation structures and [ii] to
recommend it as a semantics for ISO 24617 standards
on semantic annotation frameworks such as ISO-TimeML
(ISO, 2020) or ISO-Space (ISO, 2020). As a semantics for
these annotation frameworks, ABS has two roles. One role
is to validate the abstract syntax that formally defines each
annotation framework in set theoretic terms (Bunt, 2010).
The other is to interpret the annotation structures that are
generated by, or conform to, a relevant annotation frame-
work (see (Lee, 2018) and (Pustejovsky et al., 2019)).
ABS is a structurally simple semantics, consisting of [i] a
representation language ABSr and [ii] a finite set of logical
predicates that are used in ABSr, but are defined as part of
a model structure like meaning postulates or word mean-
ings as introduced by Carnap (1947 1956) and Montague
(1974), as shown in Figure 1, and further developed by
Dowty (1979) and Pustejovsky (1995).
The rest of the paper develops as follows: Section 2 pro-
vides some motivations for ABS . Section 3 describes the
basic design of ABS. Section 4 defines the type-theoretic
first-order predicate logic-based representation language
ABSr . Section 5 breifly outlines some characteristics of
an interpretation model structure for ABS . Section 6 shows
how the composition rules of ABSr apply to the annotation
structures that conform to some of the ISO 24617 standards
on semantic annotation. Section 7 introduces some related
works and discuses the convertibility of semantic forms of
ABS to DRSs or λ-formulas. Section 8 makes some con-
cluding remarks.

2. Motivation for ABS
The main motivation of ABS is to lighten the burden of au-
tomatically generating intermediary interpretations, called
semantic forms or logical forms, of semantic annotation
structures for both human and machine learning or under-
standing. For this purpose, ABS and its representation lan-
guage ABSr introduce two minor operational modifications
into the two well-established and model-theoretically in-
terpretable representation languages, the type-theoretic λ-
calculus, used for Montague Semantics (MS) (Montague,

1974), and Kamp and Reyle (1993)’s Discourse Represen-
tation Theory (DRT). The representation language ABSr of
ABS is designed to to be free from λ-operations, especially
involving higher-order variables, by replacing the operation
of substitution through the λ-conversion with an equation
solving approach (see Lee (1983)), or to convert its se-
mantic forms into visually more readable Discourse Repre-
sentation Structures (DRSs) preferably without introducing
embedded or stacked structures into them. From a theo-
retical point of view, neither ABS nor ABSr is totally dif-
ferent from Bunt (2020b) or his earlier efforts to develop
an annotation-based semantics with the interpretation func-
tion I to convert or annotation structures, defined in abstract
(set-theoretic) terms, to DRSs based on Kamp and Reyle
(1993)’s Discourse Representation Theory (DRT). From a
practical point of view, ABS is characterized by dividing the
task of interpreting annotation structures between the rep-
resentation of simpler or abbreviated semantic forms and
their interpretations enriched with lexical meaning in the
form of meaning postulates that constrain the set of possi-
ble interpretation model structures.

Based on a type-theoretic first-order predicate logic (FOL),
ABSr is augmented with [i] a small set of operators and
[ii] a set of logical predicates. As is developed in Sec-
tion 3, for any a that refers to the abstract specification of
an annotation structure or its substructures, either an en-
tity or a link structure, preferably through its ID, the op-
erator σ maps a to a semantic form σ(a), represented in
a first-order logic, while the two non-Boolean operators ⊕
and �, with their finer-grained subtypes of merging, each
relate σ(a) to another semantic form, constrained by their
semantic type. Without much depending on the particular
syntactic analysis of each input, these operators combine,
in a compositional manner, the pieces of information con-
veyed by each annotation structure or its substructures into
a model-theoretically interpretable logical form, called se-
mantic form, in FOL. Besides the Boolean connectives in
FOL, these non-Boolean operators are needed to combine
semantic forms that are not of type t (sentential type) as
bridges that connect annotation structures to logical forms:
for instance, to combine σ(Fido) of individual entity type
e with σ([runs(e) ∧ agent(e, x)]) of type e → (v → t)
without using λ-operations in an overt way.

37

As is elaborated in Section 3, ABS also introduces a small
set of logical predicates into its representation language
ABSr and treats them as meaning postulates that constrain a
model structure (see Montague (1974) and Dowty (1979)).
There are at least two reasons for the introduction of a small
set of logical predicates. One reason is representational
simplicity: it can, for instance, represent the semantic form
of the past tense of a verb in English as past(e), where
past is a predicate to be defined as part of an interpretation
model and e is a variable of type v for eventualities, instead
of introducing one of its definitions, which is the most com-
mon one [τ(e) ⊆ t ∧ t ≺ n] into the semantic form. This
semantic form requires the introduction of a real-time func-
tion τ from events to times, two temporal relations, those
of inclusion ⊆ and precedence ≺, and the notion of the
present time n. Furthermore, it is a straightforward process
to translate an entity structure like event(e1, ran, pred:run,
tense:past) into a semantic form [run(e1) ∧ past(e1)].
Another reason is representational flexibility. ABS can first
choose an appropriate definition or meaning from a set of
possible definitions given in a model structure and then de-
cide on an appropriate model M and an assignment g that
together satisfy a semantic form like [run(e1)∧past(e1)].
This would be the case particularly if the past tense needs to
be interpreted in a deitic or situational sense, as discussed
by Partee (1973) and Quirk et al. (1985).
ABS upholds the principle of minimalism and partiality in
its representation. It does not aim nor claim to treat the
total interpretation of natural language expressions. Being
based on a restricted set of markables in data, either textual
or audio-visual, and their annotation, the task of annota-
tion and that of its semantics such as ABS are bound to be
restrictive: the semantics can be either simple or complex
depending on what needs to be annotated. The granular-
ity or complexity of semantic forms only depends on that
of the input annotation structures and their substructures.
The granularity of perceiving and constructing these struc-
tures, especially involving spatio-temporal information, is
controlled or modulated through common-sense logic by
the need of their applications, as is discussed by Miller and
Shanahan (1999) and Gordon and Hobbs (2017)).

3. Basic Design
3.1. Basic Assumptions
The main characteristics of ABS are the following. First,
ABS is based on annotation work, making use of the seman-
tic annotation of coumminicative linguistic data for their
semantic interpretation. Without relying on a pre-defined
syntax, it manipulates minimally what is encoded in anno-
tation structures and their substructures and converts these
structures to logical forms that can be interpreted model-
theoretically. ABS is, for instance, designed to support
spatio-temporal annotation by validating the abstract syn-
tax of ISO-Space (ISO, 2020), as proposed and outlined by
Lee (2016), Lee (2018), and Lee et al. (2018) as well as
ISO-TimeML (ISO, 2012) and Pustejovsky et al. (2010).
Second, ABS only provides partial information on a re-
stricted set of markables for semantic annotation. Unlike
ordinary semantics like Montague Semantics (Montague,
1974) or even Minimal Recursion Semantics (Copestake et

al., 2005), ABS is not a general semantics that attempts to
treat all aspects of language in an abstract way.
Third, ABS leaves much of the information unspecified. It
allows, for instance, some variables to occur unbound in
well-formed semantic forms, as in the interval temporal
logic of Pratt-Hartmann (2007), while their scoping is left
unspecified till the last stage of composing semantic forms
or being interpreted (model-theoretically), unless the scope
is specified as part of annotation. As a result, the seman-
tic type of semantic forms is partially non-deterministic: it
can be interpreted either as of type t potentially denoting a
proposition or a truth-value or of a functional type α→ t,
where α is a well-defined type, denoting a set of individual
objects or of higher-order objects.
Fourth, ABS introduces a small set of predicates such as
past and perfective for the specification of tense and as-
pect. It can also introduce the predicates holds and occurs,
as defined in Allen (1984) and others, for the event-type de-
pendent temporal anchoring into semantic forms. All these
predicates that occur in semantic forms are defined as part
of an interpretation model or leaving room for various uses
of grammatical concepts or their contextually dependent in-
terpretations.
Being based on annotations, ABS must deal with complex
issues in semantic annotation such as quantification, for in-
stance, as raised by Bunt (2020a) and Bunt (2020b) or the
meaning of determiners that include numerals as in “two
donkeys” in language in general. It may also have to deal
with the structure and substructures of eventualities, espe-
cially dealing with dynamic motions, as discussed in Mani
and Pustejovsky (2012). The complexity or granularity of
ABS thus totally depends on that of annotation structures or
the type of annotations.
In addition, ABS upholds a couple of well-established basic
assumptions as its theoretical basis:

1. Semantics is constrained by a type theory (Montague
semantics: Montague (1974) and Dowty et al. (1981))

2. Events are viewed as individuals (Neo-Davidsonian
semantics: Davidson (1979), Davidson (2001), Par-
sons (1990), Pustejovsky (1995))

3. Variables are linked to discourse referents (Discourse
representation theory: Kamp and Reyle (1993))

3.2. Metamodel
Figure 1 shows the general design of ABS , which consists
of (1) a representation language ABS and (2) an interpreta-
tion model M with logical predicates defined.
ABS is an annotation-based semantics, meaning that its rep-
resentation language ABSr translates each a of the abstract
specification of entity or link structures that constitute an-
notation structures to a well-defined semantic form σ(a).
ABS then interprets each semantic form σ(a) with respect
to a model M , a list D of definitions of logical predicates,
and an assignment g of values to variables, [[σ(a)]]M,D,g .
Each σ(a) in ABSr is an expression of first-order logic, but
each of the logical predicates that my occur in σ(a) may be
defined in terms of higher-order logic as part of the model
structure.

38

Figure 1: metamodel of ABS

4. Syntax
ABSr subsumes a type-theoretic first-order predicate logic
(FOL). This means: [i] every well-formed (semantic) form
in ABSr is assigned one of the types, as specified in 4.1, and
[ii] every well-formed formula in FOL is well-formed and
of type t (having a truth-value) in ABSr.

4.1. Basic and Functional Types
ABS adopts the system of semantic types which Kracht
(2002) and Pustejovsky et al. (2019) have developed. They
extend the list of basic types from Montague (1974)’s basic
set of types {e, t} to an enlarged list, as specified in (1).

(1) Extended List of Types:
[i] Basic Types:

a. t, the type of truth-values
b. e, the type of individual entities
c. v, the type of eventualities
d. i, the type of time points
e. p, the type of spatial points
f. m, the type of measures
g. int, the type of intervals
h. vec, the type of vectors1

[ii] Functional Types:
h. If α and β are any types, then α→β is a type.

Type constructors such as→ are introduced to define func-
tional types: e.g., e→ t, v→ t, i→ t, p→ t or e→ (e→ t).
Eventuality descriptions such as run or love are of type
v→ t, which is abbreviated to E (see Pustejovsky (1995)),
while the same symbol E is also used as as a symbol for a
variable ranging over a set of eventualities or instances of
an eventuality. The functional type p→ t, denoting a set of
spatial points, is often represented by a type r of regions2 I
may call these functional types E and r pseudo-basic types,
for they are seldom analyzed as functional types.
As introduced by Pustejovsky et al. (2019), path types are
defined on the basis of the type of intervals int, which is
defined [0, 1] ⊂ R, where R is a set of reals. A path π will
be that function int → p, which indexes locations on the

1(g) and (h) are my own additions to the list of basic types.
2See Mani and Pustejovsky (2012) for the discussion of 3.2.2

regions as primitive objects vs. 3.2.3 regions as sets of points.

path to values from the interval [0,1] (see Pustejovsky et al.
(2019)). A vector path πv can also be defined as int→vec.
An event path πv will be defined as v→πv as the function
from eventualities to the vector path.
Kracht (2002) and Pustejovsky et al. (2019) also introduce
the group operator • to form group types, for example, p•

for the group of spatial points. Link (1998) introduces two
symbols ∗ and ? and prefixes them to a predicate P to gen-
erate the group predicate ∗P and the plural predicate ?P ,
both based on the predicate P .
Corresponding to each of the IDs of annotation structures
or its substructures, entity or link structures, and of each of
the types as defined in (1), there is a list of variables. Some
of them are listed below:

Categories3 Ids Types Variables
annotation a 1,... t a1, ...
entity x 1,... e x, x1, ...

v s, e, e1, ...
event e 1,... E , e→ t E , ...
timex3 t 1,... I, i→ t t, t1, ...
place pl 1,... r, p→ t l, l0, ...
path p 1,... πv , int→p p, p1, ...
event-path ep 1,... πε v→πv
measure me 1,... m m,m1, ...
link l 1,... t

Table 1: IDs, variables, and types

The list of variables is just a conventionally used list. To be
precise, for each entity structure E that confirms to a rec-
ognized annotation scheme such as ISO-TimeML or ISO-
Space, a variable is defined as a pair <var:τ>, where var
is a variable and τ is a type. Conventionally, any lower-
case Latin characters such as x, y, etc. or e and s are used
as variable for any one of the basic types provided that its
type is specified: for example, x:<var, p→ t> to use x as
a variable ranging over regions of type r, or p→ t. Upper-
case Latin characters or special characters like E are used
for functional types: E is a variable for eventuality descrip-
tions such as what is denoted by a verb like “run”. Note that
run(e) is of type t, while the eventuality description run is
of type v→ t and its argument e is a variable of eventuality
type v.4

4.2. Syntax Proper
The part of ABSr that introduces the merge operators and
their use is defined by SyntaxabsR. This syntax specifies
what constitutes ABSr and how its constituents are formed.
Some preliminary remarks are made before specifying the
syntax of ABSr .

4.2.1. Preliminary Remarks
Just like any language, the representation language ABSr is
a language that consists of a non-empty set of strings
of character symbols. Each of such character strings in

4Here, it is a bit confusing to use e as standing for a basic type
for individual entities and use it as referring to an eventuality of
type v: e.g. [runv→t(ev) ∧ agent(e,x)]e→(v→t].

39

ABSr is called a semantic form because it serves as an inter-
mediary form for the model-theoretic interpretation of an-
notation structures. Further to clarify what ABSr is, I make
some technical remarks.

Remark 1: Mapping σ For any a that refers to the ab-
stract specification of each of the entity or link structures
which together constitute an annotation structure, indepen-
dent of how these structures are represented, σ maps a to a
semantic form in ABSr . σ(a) is read as “the semantic form
of a” in ABSr and is a well-formed form (wff) of ABSr .
σ(a) is considered independent of the format that repre-
sents it, but has to check the abstract syntax that validates
the abstract specification a. Hence, a must be the same
as the interpretation function I that is introduced in Bunt
(2020b) and Bunt (2020a).

Remark 2: Model-theoretic Interpretation The sym-
bol [[]] is used to represent a (model-theoretic) denotation.
Given any semantic form σ(a) in ABSr, its denotation with
respect to a model M , an assignment g of values to vari-
ables, and a set D of definitions for logical predicates is
represented by [[σ(a)]]M,g,D.

Remark 3: Typing ABSr is a type-based language.
Hence, every well-formed (semantic) form A and any c of
its constituents such as variables in ABSr is assigned a type.
The type τ of A or c is represented as a pair: e.g., <A:τ>,
<c:τ>, <var:τ>, or as a subscript to A or one of its con-
stituents: Aτ , cτ or xe.

4.2.2. Formulation of Syntactic Rules
Like the syntax of an ordinary language, SyntaxabsR con-
sists of a vocabulary and a set of formation rules, as speci-
fied in (2).

(2) SyntaxabsR = <V ,R> such that
a. V is a vocabulary that includes binary merge op-
erators {⊕, �} over the set of semantic forms in
ABSr and their subtypes, and
b. R is a set of composition rules for merging, as for-
mulated in (7).

There are two sorts of well-formed semantic forms (swff)
in ABSr: basic and composed, each defined by a rule in R,
a list of rules, in (4.2.3) and (7).

4.2.3. Atomic Semantic Forms
Atomic semantic forms are defined by Rule A.

(3) Rule A for Atomic semantic forms:
For any abstract specification aEc of an entity structure E
of category c,5 and a type τ associated with cat,
σ(aEc)τ is a well-formed form of type τ in ABSr .

Remark 4: aEc in σ(aEc)τ is replaced by the ID of Ec.

Following DRT (Kamp and Reyle, 1993), the new occur-
rences of variables in a semantic form are registered.

5In a concrete syntax, this category is often called tag or ele-
ment.

(4) Rule A.1 for Variable Registry:
Any variable that is newly introduced to σ(aEc) is
listed in the preamble: i.e., Σvar:typeσ(aEc).
Note: These variables may not be registered if they
can be recognized contextually.

The variables in the preamble Σvar:type are treated as dis-
course referents, to which each occurrence of the variables
in σ(aEc) is bound.
Consider an example, annotated as in (5):

(5) a. Fido ranw2 awayw3.

b. Annotation(id=a5)
event(e1, w2-3, pred:run, tense:past)

c. Semantic form:
σ(e1e)α := {e1:e}[run(e1)t ∧ past(e1)t]α
where “:=” is a meta-symbol standing for “is”.

Some notes are needed here. (1) For now temporally, the
type of σ(e1) is left unspecified: it is only marked with
α, whereas the type of e1 in the registry is specified as
the individual type e. (2) The ID “e1” in σ(e1) does not
refer to the entity structure of category event, but its ab-
stract specification that conforms to the abstract syntax of
the relevant annotation scheme. (3) The representation of
Σvar:typeσ(aEc) is exactly the same as DRS except that
σ(e1) in ABSr is typed, as in Bos et al. (2017)’s Gronin-
gen Meaning Bank (GMB). The semantic form in (5) can
be converted to a type-based DRS except that the type of
the entire DRS is not specified.

(6)
e1:e

run(e1)t
past(e1)t

4.2.4. Composed Semantic Forms
The current version of ABSr introduces two merge opera-
tors,⊕ and�, and their subtypes each marked with a differ-
ent superscript to represent the merging of (1) two seman-
tic forms or (2) a pair of semantic forms with a functor-
like semantic form. The second type of merging is mo-
tivated by the treatment of tripartite link structures of the
form <η,E, ρ>, where ρ is a type of relation between an
entity η and a set E of entities, in ABSr .
These operators are non-Boolean connectives. They are
needed to be able to merge semantic forms of type other
than the truth-type t. More operators may need to be in-
troduced to treat finer-grained compositions, especially in-
volving the semantics of determiners that include general-
ized quantifiers, plurals, and the merging of scopes. As sug-
gested by Bunt (personal communication), different sym-
bols will be introduced to represent various subtypes of
composition.6

For the formulation of composition rules, it is assumed that
these rules hold for any well-formed semantic forms Aα,
Bβ , and Cγ , each of which is typed as α, β, and γ, respec-
tively. For these semantic forms, there are two major types

6Bunt (2020b), for instance, introduces the scope merge oper-
ator ⊕s and the possessive scoped merge operator ⊕ps.

40

of composition, conjunctive (⊕) and distributive (�), and
then their subtypes:

(7) Types of composition:
Conjunctive composition (⊕):
Rule 1bo Boolean conjunctive composition (⊕bo)
Rule 1fa Functional conjunctive composition (⊕fa)
Rule 1sub Substitutive conjunctive composition

by substitution (⊕sub)
Rule 1eq Equative conjunctive composition

by equation solving (⊕eq)
Disjunctive composition (�):
Rule 2 Disjunctive composition (�)
Rule 2int Intensional disjunctive composition

(�int)
Rule 2imp Implicational disjunctive composition

(�imp)

Rule 1bo Boolean conjunctive composition (⊕bo) is the
most common type of composition, as formulated in

(8) Rule 1bo: Boolean conjunctive composition:
a. [At ⊕bo Ct]α := [At ∧ Ct]t
b. [{At, Bt}α ⊕bo Ct] := [[At ∧Bt]t ∧ Ct]

Rule 1bo applies to most of the annotation structures in
ISO-TimeML (ISO, 2012), ISO-Space (ISO, 2020), and
ISO standard on semantic role annotation (ISO, 2014). For
illustration, consider (9):

(9) a. Fido is barking.

b. Entity Structures:
entity(x1, w1, type:dog, form:nam)
event(e1, w2-3, pred:bark, tense:present,

aspect:progressive)

c. Link Structure:
srlink(e1, x1, agent)

The annotation of text fragment (9a) consists of a list of
entity structures in (b) and a link structure (c) over them.
Here, srlink specifies the semantic role of the participant
x1 as an agent participating in the event e1 of barking, as
illustrated in (10).

(10) a. Semantic forms of the entity structures:
σ(x1)t := {x1:e}[dog(x1)∧named(x1, F ido)]
σ(e1)t := {e1:v}[bark(e1) ∧ presProg(e1)]

b. Semantic form of Semantic role link:
σ(srlink)t
:= {x1:e, e1:v}

[{σ(x1)t, σ(e1)t} ⊕bo agent(e1, x1)t]
:= {x1:e, e1:v}

[[σ(x1)t ∧ σ(e1)t] ∧ agent(e1, x1)t]
:= {x1:e, e1:v}

[[dog(x1) ∧ named(x1, F ido)] ∧
[bark(e1) ∧ presProg(e1)] ∧ agent(e1, x1)]

c. Semantic form of annotation structure:
σ(a9)
:= {x:e, e:v}σ(srlink)

by Variable renaming and binding
:= {x:e, e:v}[bark(e) ∧ presProg(e)] ∧

agent(e, x)]

Rule 1fa Functional conjunctive composition reflects
the functional application of a functor applying to its ar-
gument(s) in Montague Semantics (Montague, 1974) or
(Dowty et al., 1981). Rule 1fa is formulated in (11):

(11) Rule 1fa Functional conjunctive composition:
a. [Aα ⊕fa Cα→t)] := [At ∧ Ct]
or
b. [{Aα, Bβ}]⊕fa Cβ→(α→t)] := [[At ∧Bt] ∧ Ct]

Example (9) can be analyzed in terms of a functor-argument
analysis by assigning a functional type α→ t, where α is a
type, to the type of each of the annotation structures.

(12) a. Semantic forms of the entity structures:
σ(x1)e→t
:= {x1:e}[dog(x1) ∧ named(x1, F ido)]
σ(e1)v→t
:= {e1:v}[bark(e1)∧ presProg(e1)]

b. Semantic form of Semantic role link:
σ(srlink)
:= {x1:e, e1:v}

[{σ(x1)e→t, σ(e1)v→t} ⊕fa
agent(e1, x1)(v→t)→((e→t)→t)]

:= {x1:e, e1:v}
[[σ(x1)t ∧ σ(e1)t] ∧ agent(e1, x1)t]

:= {x1:e, e1:v}
[[dog(x1) ∧ named(x1, F ido)]t
∧ [bark(e1) ∧ presProg(e1)]t ∧
agent(e1, x1)t]t

c. Semantic form of annotation structure:
σ(a9)
:= {x:e, e:v}σ(srlink)
:= {x:e, e:v}

[[dog(x) ∧ named(x, F ido)]
∧ [bark(e) ∧ presProg(e)] ∧ agent(e, x)]
by Variable renaming and binding

The functional composition with the operator ⊕fa is equiv-
alent to the functional application in λ-calculus, as shown
by (13):

(13) a. Arguments:
σ(x1)e→t
:= λx1[dog(x1) ∧ named(x1, F ido)]
σ(e1)v→t
:= λe1[bark(e1)∧ presProg(e1)]

b. Funtor for Semantic role link applying to the two
arguments in (a):
σ(srlink)
:= [λQ[λP [P (x1) ∧Q(e1) ∧

agent(e, x)](σ(e1))](σ(x1))]

By applying four λ-conversions to (13b), we obtain the
same result as (12c). One noticeable problem with the func-
tional application in λ-calculus is the placing of the argu-
ments in the right order when the functor applies to them.

41

Rules 1sub and 1eq , subtypes of conjunctive composi-
tion, are needed when one of the inputs to links is treated
as of some basic or pseudo basic type. Consider the same
example (9) but with a different semantic treatment:7

(14) a. σ(x1)e := fidoe
σ(e1)v→t
:= {e1:v}[bark(e1)∧ presProg(e1)]

b. σ(srlink3)
:= {e1:v}

[{σ(x1)e, σ(e1)v→t} ⊕sub
agent(e1, x1)(v→t)→(e→t)]

:= {e1:v}
[σ(e1)t ∧ agent(e1, fido)t]

:= {e1:v}
[[bark(e1) ∧ presProg(e1)]t ∧
agent(e1, fido)]

The substitution simply replaces some occurrences of a
variable with something like a name fido.
The equation solving composition (⊕eq) also deals with ba-
sic types like names or measures. There is no substitution,
but something like fidoe turns into an equation that does
not carry kinds of information other than what is stated, as
shown in (15):

(15) a. σ(x1)e := {x1:e}[x1=fidoe]t

b. σ(e1)t
:= {e1:v}[bark(e1)∧ presProg(e1)]

c. σ(srlink4)
:= {x1:e, e1:v}

[{σ(x1)e, σ(e1)t} ⊕eq agent(e1, x1)t]
:= {x1:e, e1:v}

[[σ(x1) ∧ σ(e1)t] ∧ agent(e1, x1)t]
:= {x1:e, e1:v}

[[x1=fido] ∧ [bark(e1) ∧ presProg(e1)]t ∧
agent(e1, x1)]

d. σ(a9) := σ(srlink4)

Now by the rule of substitution of identicals in FOL, we
have:

(16) {e1:v}
[[bark(e1) ∧ presProg(e1)] ∧ agent(e1, fido)]

Unlike the equation solving approach proposed here, Kamp
and Reyle (1993) represents names like Fido as Fido(x)
of type t in DRSs. This is acceptable but fails to apply
the substitution of identicals. Note also that the equation
solving approach can be extended to basic types other than
entity type e.

Rule 2 Distributive Composition (�):
[{Aα, Bβ} � Cβ→(α→t)] := [A′t →c B

′
t]t,

where→c refers to an implication the type of which needs
to be specified for each case and A′ and B′ are minimal
modifications of A and B.

7In practice, the semantic treatment of names is much more
complicated than treating it merely for its referential use. Kamp
and Reyle (1993) treat names like “John” as a predicate, thus rep-
resenting it as John(x) in a DRS.

The conjunctive operator⊕ and its subtypes generate truth-
functional conjunctions. In contrast, the distributive opera-
tor � possibly with its subtypes generates non-conjunctive
relations of implication the type or meaning of which needs
further analysis.

4.3. Additional Illustrations
Rule 1fa Functional conjunctive composition with
(⊕fa) applies to link structures that relate non-basic type
entity structures. Consider example (17)

(17) a. John diedw2 lastw3 yearw4.

b. Annotation (id=a17):
Entity structure:

event(e1,w2, pred:die, tense:past)
timex3(t1,w3-4, type:date, value:2019-XX-XX)

Link structure:
tlink(e1,t1, isIncluded(e1,t1))

(18) a. Semantic form of entity structures:
σ(e1) := {e1}[die(e1) ∧ past(e1)]
σ(t1) := {t1}[year(t1,2019)]

b. Semantic form of temporal link structure:
σ(tlink)
:= {e1, t1}[{σ(e1)v→t, σ(t1)i→t}

⊕fa occurs(e1, t1)(i→t)((v→t)→t)]
:= {e1, t1}[[σ(e1)t ∧ σ(t1)t] ∧ σ(tlink)t]
:={e1, t1}[[die(e1) ∧ past(e1)] ∧ year(t1,2019)

∧ occurs(e1, t1)]

c. Semantic form of annotation structure:
σ(a17)
:= {e, t}σ(tlink)
:= {e, t}[die(e) ∧ past(e) ∧ year(t,2019)

∧occurs(e, t)]

Rule 1eq Equation solving (⊕eq) applies to the annota-
tion structures that contain names or other basic types. Con-
sider an example taken from Pustejovsky et al. (2019) that
introduce the semantics of ISO-Space.

(19) a. [Gothenburgpl1] is [ins1] [Swedenpl2].
b. [[Gothenburg]] = G, <G:p→ t>
c. [[Sweden]] = S, <S:p→ t>
d. [[in]] = λyλx[in(x, y)], <in:r→ (r→ t)>
e. in(G,S)

The treatment of a spatial relation given in (19d,e) fails to
indicate which location stands for x and which for y. In
fact, one of the difficulties with λ-operation is where to
place its arguments. Example (19) can be treated more ex-
plicitly with Rule 1eq equation solving.

(20) a. σ(pl1)t := {x}[x=G], <x:p→ t>

b. σ(pl2)t := {y}[y=S], <y:p→ t>

c. σ(qslink)t
:= {x, y}[{[x=G]t, [y=S]} ⊕eq in(x, y)]
:= {x, y}[[[x=G]t ∧ [y=S]t] ∧ in(x, y)]

With the rule of substitution of identicals, we then obtain
the same result in(G,S), as given in (19e).

42

Rule 2 Distributive composition with the operator � ap-
plies to subordination or quantification constructions. Con-
sider example (21), called equi-NP construction.8

(21) a. Johnx1,w1 wantse1,w2 to teache2,w4 on Monday.

b. Annotation (id = a21):
Entity structures:

entity(x1, w1, form:John)
event(e1, w2, pred:want, theme(e1,e2))
event(e2, w4, pred:teach, agent(e2,x1))

Subordination link structure:
slink(e1, e2, modal)9

Pustejovsky et al. (2005) annotated the subordination re-
lation between two events, want(e1) and teach(e2) as be-
ing modal. Montague Semantics, in contrast, treats it as
a relation between the intensional predicate want and the
property of teaching. However, the intensionality of the
predicate want in the main clause requires Rule 2i with an
operator�i, a subtype of disjunctive composition for inten-
sional cases like σ(a21).

(22) a. Semantic forms of the entity structures:
σ(x1)t := {x1}[x1=John]
σ(e1)E ,where E=(v→ t),
:= {e1, e2}[want(e1) ∧ theme(e1, e2)]
σ(e2)e→(E→t)
:= {x1, e2}[teach(e2) ∧ agent(e2, x1)]

b. Semantic form of the subordination link structure:
σ(slink)t
:= {x1, e1, e2}[{σ(e1)E , σ(e2)e→(E→t)]�i

(σ(e1), σ(e2))(e→(E→t))→(E→t)]
:= {x1, e1, e2}[σ(e1)t →int σ(e2)t]
:= {x1, e1, e2}[[want(e1) ∧ theme(e1, e2)]

→i ([go(e2) ∧ agent(e2, x1)])]

c. Semantic form of the whole annotation structure:
σ(a21) := σ(slink)t

The semantic form σ(a21) shows that the predicate want
has the event e2 as its theme and that the agent of the pred-
icate go in the subordinated complement is John. The non-
Boolean connective →int connects the semantic forms of
the two components of the subordination construction (21)
involving the intensional predicate want. The connective
→i needs to be defined as part of a model structure with a
tentative definition as in (23):

(23) Definition of→int (tentative)
Given a model M for a modal logic with a set W of pos-
sible worlds W that includes the actual world w0 and an
intentional world wi accessible from w0, and two semantic
forms, φ and ψ, of type t,

[[φ→iψ]]M,w0=1 iff
[[ψ]]M,wi=1 provided [[φ]]M,w0=1.

This means that the eventuality of “teaching (on Monday)”
is or becomes realized in the mind (intended world) of the
experiencer John only.

8Annotation a21 is simplified to focus on the subordination
link (slink).

9This example is taken from Pustejovsky et al. (2005), p. 553.

5. Model-theoretic Interpretation
5.1. General
Semantic forms are subject to a model-theoretic interpre-
tation. Each well-formed semantic form σ(a) of an anno-
tation structure a is interpreted with respect to a model M
and an assignment g of values to variables. [[σ(a)]]M,g is
then understood as the interpretation or denotation of σ(a).
The structure of each model M depends on the kind of se-
mantic annotation. For the interpretation of temporal anno-
tation, for instance, a set of times T and a set of temporal
relations such as the precedence relation ≺ over T become
a part of its model structure. Furthermore, the construction
of such a model is constrained by some possible uses or
definitions of logical predicates, called meaning postulates,
as is discussed in 5.2.1.

5.2. Interpretation of unbound occurrences of
variables

There may be some unbound occurrences of variables in
well-formed semantic forms of ABSr . By Rule A.1 for
Variable Registry, these variables may be either bound to
the discourse referents registered before the semantic form
of each of the substructures of an annotation structure or
bound existentially when their scope is explicitly specified.
Or else they can be interpreted with the assignment g as if
they were bound existentially.

5.2.1. Meaning Postulates as Constraints
ABS makes use of logical predicates as part of the (object)
representation language to simplify the representation of
semantic forms or make it flexible to accommodate differ-
ent interpretations. These predicates, marked in boldface,
in ABSr are defined possibly in terms of higher-order logic
as part of the model structure.
The predicate past is, for instance, introduced to represent
the tense of an event as in (24):

(24) a. [walk(e) ∧ past(e)]

b. instead of [walk(e) ∧ e ⊆ t ∧ t ≺ n]

as in Kamp and Reyle (1993, page 521). Then its definition
is given in (25) as part of an interpretation model structure.

(25) Truth Definition of Predicate past:
Given an event e, a runtime function τ from events to times,
a time t, and the present time n, as specified in a model
structure M ,
past(e) is true with respect to a model M if and only
if τ(e) ⊆ t and t ≺ n.

The predicate past may be defined differently to accommo-
date its deitic or situational use (see Partee (1973) or Quirk
et al. (1985)).
Aspectual features such as present perfect and progressive
are also encoded into annotations just as they are. Consider
a case of the present perfect aspect in (26).

(26) a. Mia [has visited]e1 Boston.

b. Annotation (id=a26):
event (e1, w2-3, pred:visit, tense:present,

aspect: perfect)

43

c. Semantic Form:
σ(e1) := [visit(e1) ∧ presPerfect(e1)]

Semantic form (26c) is then interpreted by the definition of
presPerfect given as part of a model structure. Otherwise,
its representation gets complicated similar to DRS, for in-
stance. Here is an example from Cann et al. (2009).

(27) a. The plant has died.

b. {a, e, t, n, r, s, u}
e ⊆ t
t ≤ n
r=n
Result-from’(e, s)
s© r
Die’(e, u)
u=a
Plant’(u)
Dead’(s, u)

ABSr , in contrast, yields the following representation:

(28) a. The plant has died.

b. Annotation:
entity(x1, w2, type:plant)
event(e1, w4, pred:die, tense:present,

aspect:perfct)
srlink(e1,x1, theme)

c. Semantic Forms:
σ(x1) := plant(x1)
σ(e1) := [die(e1)∧ presPerfect(e1)]
σ(srlink)
:= [{σ(x1)t, σ(e1)t} ⊕bo theme(e1, x1)t]
σ(26)
:= {e, x}[die(e)∧ presPerfect(e) ∧

theme(e, x)]

The interpretation of σ(e1) in (28c), for instance, requires
the truth-conditional definition of presPerfect(e) that re-
flects those notions of the perfective aspect encoded in DRS
(27b) above.
Furthermore, the proposed way of treating tense, aspect,
and other complex predicates allows different interpreta-
tions or uses of them. Those predicates that constitute part
of the representation language of semantic forms in ABSr ,
however, require truth-definitions or meaning postulates
that constrain and define a set of admissible model struc-
tures (see Carnap (1947 1956; Montague (1974; Dowty
(1979)).

6. Applications
6.1. Boolean Conjunctive Composition
ISO-Space (ISO, 2020) introduces the movement link
(movelink) to annotate motions involving paths. The predi-
cate traverses associated with motions is one of the logical
predicates that need to be defined in the model structure
of ABS . It can also be illustrated how the semantic forms
involving motions and paths can be derived through Rule
1bo Boolean conjunctive composition, as is demonstrated
in (29).

(29) a. Marakbles:
Miax1,w1 arrivedm1,w2 ∅ep1 in Bostonpl1,w4 yes-
terday.

b. Annotation (id=a29):
Entity structures:

entity(x1,w1, type:person, form:nam)
motion(m1,w2, pred:arrive, type: transition,

tense:past)
eventPath(ep1,∅, start:unspecified, end:pl1,

trigger(m1,ep1))
place(pl1,w4, type:city, form:nam)

Movement link structure:
movelink(figure:x1, ground:ep1,

relType:traverses)

Each markable is identified with an ID associated with its
category and anchored to a word. Motions, as denoted by
verbs like arrive, trigger a path, called event-path. This
path is marked with a null category or non-consuming tag
∅ because it is not associated with any non-null string of
words.

(30) a. Semantic forms of entity structures:
σ(x1)t := [person(x1) ∧ named(x1,Mia)]
σ(m1)t := [arrive(m1) ∧ past(m1)]
σ(ep1)t := [start(π, γ(l0)) ∧ end(π, l1)

∧ triggers(m1, π)]
σ(pl1)t := [named(l1, Boston) ∧ city(l1)]

b. Semantic form of the movement link structure:
σ(movelink)
:= [{σ(x1)t, σ(ep1)t} ⊕bo traverses(x, π)t]
:= [[[person(x1) ∧ named(x1,Mia)]

∧ [start(π, γ(l0)) ∧ end(π, l1)
∧ triggers(m1, π)]
∧ [named(l1, Boston) ∧ city(l1)]]
∧ traverses(x, π)]

c. Annotation structure:
σ(a29)
:= {x1, π1, l0, l1,m1}σ(movelink)
=: {x, π, l0, l1,m}

[[[person(x) ∧ named(x,Mia)]
∧ [start(π, γ(l0)) ∧ end(π, l1)
∧ triggers(m,π)]
∧ [named(l1, Boston) ∧ city(l1)]]
∧ traverses(x, π)]

All of the semantic forms that are derived through various
links have been shown to undergo Rule 1bo Boolean con-
junctive composition only. This was illustrated with srlink
for semantic role labeling, tlink for temporal anchoring, qs-
link for the location of regions, and movelink for the anno-
tation of motions involving their movers and event-paths.

6.2. Distributive Composition for Conditionals
Besides its subtype �int for intensional subordinate con-
structions, the distributive composition can have other sub-
types. Here I introduce Rule 2imp with the operator �imp
for the case of implication. The word if in English trig-
gers a conditional sentence which is often interpreted as a

44

truth-functional implication in Propositional Logic. Given
two well-formed formulas φ and ψ, the conditional formula
[φ → ψ] is treated as a well-formed formula in Propo-
sitional Logic and interpreted truth-functionally as being
false only if φ is true but ψ is false. Although the interpreta-
tion of conditionals in ordinary language is more complex
than the truth-functional interpretation just given, (31) and
(32) illustrate how if-constructions are annotated and how
their semantic forms are represented in a tripartite structure.

(31) Data:
If it rains tomorrow, then the picnic will be canceled.

(32) a. Annotation of Antecedent (id=a32a):
event(e1, w3, pred: rain)
timex3(t1, w4, type:date, value:2020-02-04)
tlink(tl1, e1, t1, isIncluded)

b. Annotation of Consequent (id=a32b):
event(e2, w7, pred: picnic)
event(e3, w10, pred: beCanceled, tense:future,

theme:e2)
timex3(t2, ∅, type:date, value:unspecified)
tlink(tl2, e3, t2, isIncluded)

c. Subordination link:
slink(antecedent:a1, consequent:a2, conditional)

Based on annotation (32), we obtain the semantic forms,as
shown in (33):

(33) a. Semantic forms of antecedent:
σ(e1)t := [rain(e1)t]
σ(t1)t := [date(t1) =2019-02-04]t
σ(tl1)
:= [{σ(e1)t, σ(t1)t} ⊕(bo)occurs(e1, t1)t]
:= [[rain(e1) ∧ date(t1,2019-02-04)]

∧ occurs(e1, t1)]t

b. Semantic form of consequent:
σ(e2)t := [picnic(e2)]
σ(e3)t := [beCanceled(e3) ∧ theme(e3, e2)]
σ(t2)t := γ(t2)10

σ(tl2)
:= [{σ(e3)t, σ(t2)t} ⊕bo occurs(e3, γ(t2))t]
:= [[[beCanceled(e3) ∧ theme(e3, e2)]

∧ γ(t2)] ∧ occurs(e3, γ(t2))]t

c. Semantic form of conditional:
σ(slink)
:= [{σ(tl1)t, σ(tl2)t} �imp

implies(σ(tl1), σ(tl2))t→(t→t)]
:= [σ(tl1)→ σ(tl2)]
:= [[rain(e1) ∧ date(t1,2019-02-04)

∧occurs(e1, t1)]t → [[beCanceled(e3)
∧ theme(e3, e2) ∧ future(e3)] ∧ γ(t2)
∧ occurs(e3, γ(t2))t]]

10γ is a function that assigns a time to a deitic temporal expres-
sion or a contextually determinable unspecified time.

d. σ(a32b)
:= {e1, e2, e3.t1, γ(t2)}σ(slink)

[[rain(e1) ∧ date(t1,2019-02-04)
∧occurs(e1, t1)]t → [[beCanceled(e3)
∧ theme(e3, e2) ∧ future(e3)] ∧ γ(t2)
∧ occurs(e3, γ(t2))t]]

With respect to the operator�imp, the semantic form of the
antecedent, σ(tl1), is understood to be the restrictor R and
that of the consequent, σ(tl2), is the nuclear scopeN , while
the relation of implication between them is represented by
the operator→.

7. Comparison
7.1. Related Work
There have been several theoretical works showing how an-
notation structures can be interpreted and a variety of large-
scale computational efforts to implement them for compu-
tational applications. Some of them are annotation-based
semantics in one way or another.
Hobbs and Pustejovsky (2003) develop a semantics for
TimeML (Pustejovsky et al., 2005), based on the OWL-
time ontology. They provide a fine-grained way of annotat-
ing and interpreting various temporal relations. ABS is de-
signed to accommodate the OWL-time ontology in defining
its logical predicates related to temporal annotation.
Katz (2007) introduces a denotational semantics that di-
rectly interprets TimeML annotation structures represented
in XML. The model structure proposed in Katz (2007) be-
comes part of the temporal model structure for ABS .
Bunt (2007) and Bunt (2011) introduce a semantics for se-
mantic annotation. This eventually develops into a seman-
tics based on the abstract syntax of a semantic annotation
scheme. Bunt (2020a) and Bunt (2020b) have developed
QuantML, a markup language for quantification, that can
apply to the annotation and interpretation of a full-range
of features related to quantification such as the definite-
ness, involvement or collectivity (distributivity) of entities
or scope ambiguity involving quantifiers and eventualities.
Lee (2008) and Lee (2011) follow the OWL-time ontology
and a compositional approach to work on temporal annota-
tions with an extensive use of λ-operations. It shows some
degree of complexity in the use of λ-operations when they
are recursively embedded, for it requires to raise the order
of variables as the embedding gets deeper.
One of the reasons for introducing ABSr is to avoid recur-
sive embedding and substitutions (see Hausser (2015)). For
now, ABSr has Rule 1sub Substitutive conjunctive composi-
tion, but this should be deleted eventually except for the il-
lustration of rudimentary annotations involving names and
other basic types. Database Semantics (DBS) (Hausser,
2006) provides a theoretical foundation for the understand-
ing of language analysis and generation without recursions
and substitutions, but with the associative linear processing
of language. This has motivated the design of ABS to some
extent.
Then there are other types of semantics that present differ-
ent ways of representing meaning in language. Banarescu
et al. (2013) introduce AMR (the Abstract Meaning Repre-
sentation) to represent the semantic roles mainly based on

45

PropBank in a logical format, PENNMAN format, or di-
rected graph structure. He (2018) also introduces a way of
annotating semantic roles, which is called Shallow Seman-
tics, without relying on pre-defined syntactic structures but
introducing syntax-independent span-based neural models
or labelled span-graph networks (LSGNs).
Based on syntax-free annotations, ABSr is also syntax-
independent. Its current representation format is strictly lin-
ear but needs to move onto a graphic mode for visual pur-
poses. The composition rules of ABSr are constrained by
type matching and also syntax-independent unlike Moens
and Steedman (1988)’s categorial grammar or Kamp and
Reyle (1993)’s DRSs. Dobnik et al. (2012) and Dobnik
and Cooper (2017) introduce a type theory with records to
constrain semantic representations and their manipulations
in language processing. Their type system, especially re-
lated to spatial perception, will properly orient the spatio-
temporal annotation of ISO-Space and meaning representa-
tion through ABS . The earlier work of Pustejovsky (2001)
on type construction also lays a basis for the type theory of
ABS for a finer-grained treatment of entities and eventuali-
ties.
For the computational applications of semantic annotations,
the Gronigen Meaning Bank (GMB) (Bos et al., 2017) is
very much related to the basic motivation of ABS in efforts
to modify the classical version of DRT by making its syn-
tax based on a (Montagovian) type systems consisting of
two types, e and t, and by translating DRSs into a first-
order logic only, for instance, while deleting so-called du-
plex conditions in DRSs. The basic design of the Parellel
Meaning Bank (PMB) also adopts DRT as its formalism for
meaning representation while adopting Combinatory Cate-
gorial Grammar as its syntax. Since it applies to multi-
lingual annotation, ABS can make use of it when the ISO
standards on semantic annotation are extended to multilin-
gual annotations, especially for the purposes of multilin-
gual translations.
Nevertheless, the theoretical framework of ABS and its rep-
resentation language is conservative in practice, being es-
sentially based on the λ-calculus and the graphic represen-
tation of Kamp and Reyle (1993)’s DRT. This will be shown
in the ensuing Subsection 7.2.

7.2. Convertibility
The composition of semantic forms is constrained by their
semantic types. These types simply reflect those in Mon-
tague semantics (Montague, 1974) and (Dowty et al., 1981)
and also the extended type theory by Kracht (2002) and
Pustejovsky et al. (2019), thus making all these semantic
forms isomorphic to those λ-constructions in λ-calculus. If
such a typing of the semantic forms of annotation struc-
tures is ignored or if each of the semantic forms is treated
as being of type t, then these semantic forms can easily be
converted to DRSs (Kamp and Reyle, 1993).
There is an option to choose a type-theoretic semantics or
not. ABS allows both but prefers to choose a type-theoretic
semantics to constrain its representation language ABSr ,
while enriching its interpretation model structure, as shown
in Figure 2.11

11Although Figure 2 indicates that DRT/DRSs are not based on

Figure 2: Options: Type-theoretic or Not

If a type theory is adopted, then the logical predicates can
be defined in terms of type-theoretic higher-order logic.
In ABS , the choice of a theory depends on the treatment of
unbound variables and unspecified types. ABS treats logi-
cal forms with occurrences of unbound variables as well-
formed semantic forms. Individual (or predicate) variables
may occur unbound in well-formed semantic forms, as
in the interval temporal logic of Pratt-Hartmann (2007).12

Here is an example with a markable "visited"e1 :

(34) a. Data:
Miax1 visitede1 Berlin, New York, [last year]t1.

b. Annotation (id=a5.unbound):
Entity structures:

event(e1, m1, pred:visit, tense:past)
timex3(t1, m2, type:gYear, value:2019)

Link structure:
tlink(e1, t1, isIncluded)

c. Semantic Forms:
σ(e1)α := {e1}[visit(e1) ∧ past(e1)]
σ(t1)β := {t1}[gYear=(t1, 2019)]
σ(tlink)γ
:= {e1, t1}[{σ(e1), σ(t1)}© occurs(e1, t1)]

Each of the semantic forms in (34c) contains some variables
which are registered in its preamble. In ABSr , these vari-
ables can be bound in two different ways, either by the ex-
istential quantifier or by the λ-operator. The assignment of
a type to each semantic form depends on which way these
(registered) variables are bound. The type of each semantic
form is:

• Case 1: either of type t (truth-value carrying) as if the
unbound variables were bound by the existential quan-
tifier ∃:
i.e., ∃{e}[visit(e) ∧ past(e)] (type t)

• Case 2: or of some functional type (predicate) as if the
unbound variables were bound by the λ-operator:
i.e., λe[visit(e) ∧ past(e)] (type v→ t)

a type theory, the DRT formalism adopted by Bos et al. (2017) is
based on a type theory.

12ABS has no predicate variables.

46

Depending on which case is chosen, the semantic form of
a link like σ(tlink) in (34c) undergoes a different rule of
composition.

Case 1 allows the conversion of semantic forms in ABS to
DRSs.

(35) Case 1:
Rule 1 Boolean conjunctive composition
a. σ(tlink)
:= [{σ(e1)t, σ(t1)t} ⊕bo occurs(e1, t1)t]
:= {e, t}[[visit(e) ∧ past(e)] ∧ gYear(t, 2019)

∧ occurs(e, t)]
b. σ(a34) = σ(tlink)

As shown in (35), Case 1 Boolean conjunctive composition
(⊕bo) can easily be converted to an equivalent DRS.

(36) Case 1 in DRS:
e t

visit(e)
past(e)

gYear(t,2019)
occurs(e,t)

Although the application of Rule 1bo Boolean conjunctive
composition is type-constrained, there is no such a con-
straint on the derivation of DRSs.

Case 2 allows the conversion of semantic forms in ABSr
to well-formed forms in λ-calculus as in Montague Seman-
tics (Montague, 1974). For the illustration of Case 2, con-
sider example (34), as was just given:

(37) Case 2:
Rule 2 Functional conjunctive composition (⊕fa):
a. σ(tlink)t
:= [{σ(e1)E , σ(t1)I} ⊕fa occurs(e1, t1)I→(E→t)]
:= [[visit(e1) ∧ past(e1)] ∧ gYear(t1,2019)

∧ occurs(e1, t1)]
b. σ(a34) = σ(tlink)t

The semantic form σ(tlink) in (37) is treated of a func-
tional type, I→ (E → t), where I is i→ t and E is v→ t.
Then the semantic forms σ(e1) and σ(t1) are treated as ar-
guments of σ(tlink) such that they are of types E (set of
eventuality descriptions) and I (set of time points), respec-
tively.
In the process of the Boolean conjunctive composition, the
unbound occurrences of the variables are anchored to the
discourse referents e and t, as in DRS, or existentially quan-
tified, while adjusting their variable names accordingly.
As for the case of the functional conjunctive composition,
the whole process is understood as if all the semantic forms
were subject to a series of λ-conversions as in (38):

(38) λ-operations:
a. σ(e1)v→t := λe1[visit(e1) ∧ past(e1)]
b. σ(t1)i→t := λt1[gYear(t1,2019)]
c. σ(tlink)t :=
λTλE∃{e, t}[E(e) ∧ T (t) ∧ occurs(e, t)]

(σ(e1))(σ(t1))
:= ∃{e, t}[σ(e1)(e) ∧ σ(t1)(t)]

:= ∃{e, t}[[visit(e) ∧ past(e)] ∧ gYear(t,2019) ∧
occurs(e, t)]

It should again be stated that the derivation of semantic
forms in ABSr does not undergo such λ-operations. The
application of Rule 2 Functional conjunctive composition
is only implicitly understood to undergo such operations.
Unlike semantic forms that involve λ-operations, the ap-
plication of the ⊕fa in ABSr does not introduce predicate
variables of a higher-order, but individual variables of the
first order only. This keeps ABSr to remain at the level of
first-order.

8. Concluding Remarks
As in other parts of ISO 24617 standards on semantic an-
notation, this paper has a gap in dealing with the semantics
of entities and determiners that include generalized quanti-
fiers. Specifically, this paper fails to fully accommodate the
new developments on quantification that have been made
by Bunt (2020a) and Bunt (2020b).
ABS aims to lighten the burden and possible complexity of
generating semantic annotation structures. It would be an
ideal situation if semantic annotation structures could have
every piece of relevant semantic information encoded into
them and be interpreted directly without relying on any in-
termediate auxiliary representation scheme. But the task of
generating such annotation structures and interpreting them
directly should easily run into enormous cost and complex-
ity.
ABS is an annotation-based semantics that converts annota-
tion structures to semantic forms for their (model-theoretic)
interpretation. For the representation of these semantic
forms, ABS provides a simple representation language, a
type-theoretic first-order logic without the overuse of λ-
operations. This language makes use of a small set of log-
ical predicates, such as referring to semantic roles or event
and time structures and types, that are defined as part of an
interpretation model. The meta-language that defines these
logical predicates may be of a higher-order logic.
To follow the principle of semantic compositionality,
ABS introduces two types of composition with the conjunc-
tive ⊕ and distributive � operators and their subtypes over
the semantic forms of annotation structures that consist of
entity and link structures. Most, if not all, of the link struc-
tures in ISO-TimeML and ISO-Space only require conjunc-
tive composition, while quantificational, plural construc-
tions or some subordinated constructions such as the if-then
construction may undergo distributive (selective) composi-
tion.
There are two major types of conjunctive composition: the
Boolean type ⊕boo and the functional type ⊕fa. Then
the functional type has two subtypes, one by substitution
⊕sub and the other by equation solving ⊕eq . Annota-
tion structures that are isomorphic to non-embedded struc-
tures in Kamp and Reyle (1993)’s DRSs are considered as
undergoing the process of Boolean conjunctive composi-
tion. In contrast, those annotation structures that match
λ-structures in Montague Semantics (Montague, 1974) un-
dergo the functional conjunctive composition. This distinc-
tion is not very significant, for the semantic forms of most

47

of the annotation structures undergo the process of Boolean
conjunctive composition only.
This is the first version of ABS. It requires to be further
tested against a variety of larger data and annotation struc-
tures. This should be the case especially for the distributive
composition involving complex semantic structures.

9. Acknowledgements
Thanks to Jae-Woong Choe, Chongwon Park, and James
Pustejovsky for their reading the preliminary draft with in-
valuable comments and to the four anonymous reviewers
for their detailed constructive comments. I am very much
indebted to Harry Bunt for his laborious work to help im-
prove the final submission for publication. I thank them all,
but do not claim that all these reviewers agree with my pro-
posal or that I have fully succeeded in accommodating their
comments and suggestions.

10. Bibliographical References
Allen, J. F. (1984). Towards a general theory of action and

time. Artifical Intelligence, 23:123–54.
Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt,

K., Hermjakob, U., Knight, K., Koehn, P., Palmer, M.,
and Schenider, N. (2013). Abstract meaning representa-
tionf or sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with Dis-
course, pages 178–186, Sofia, Bulgaria, August.

Bos, J., Basile, V., Evang, K., Venhuizen, N. J., and Bjerva,
J. (2017). The Groningen Meaning Bank. In Nancy Ide
et al., editors, Handbook of Linguistic Annotation, pages
463–496. Springer, Berlin.

Bunt, H. (2007). The semantics of semantic annotations.
In Proceedings of the 21st Pacific Asia Conference on
Language, Information and Computation, pages 13–28,
Seoul, Korea. The Korea Society for Language and In-
formation.

Bunt, H. (2010). A methodology for designing semantic
annotation languages exploiting semantic-syntactic iso-
morphisms. In Alex C. Fang, et al., editors, Proceedings
of the Second International Conference on Global Inter-
operability for Language Resources (ICGL20100), pages
29–46, City University of Hong Kong, Hong Kong.

Bunt, H. (2011). Introducing abstract syntax + semantics
in semantic annotation, and its consequences for the an-
notation of time and events. In Eunryoung Lee et al.,
editors, Recent Trends in Language an Knowledge Pro-
cessing, pages 157–204. Hankookmunhwasa, Seoul.

Bunt, H. (2020a). Annotation of quantification: the cur-
rent state of ISO 24617–12. In Harry Bunt, editor, Pro-
ceedings of the 16th Joint ISO–ACL/SIGSEM Workshop
on Interoperable Semantic Annotation, pages 1–13, May.
A satellite workshop at LREC 2020, May 11–15, 2020,
Marseille, France (postponed due to COVID–19).

Bunt, H., (2020b). Semantic Annotation of Quantification
in Natural Language. TiCC/Department of Cognitive
Science and Artificial Intelligence, Tilburg University,
Tilburg, 2nd edition, February. TiCC TR 2020-2.

Cann, R., Kempson, R., and Gregoromichelaki, E. (2009).
Semantics: An Introduction to Meaning in Language.
Cambridge University Press, Cambridge.

Carnap, R. (1947, 1956). Meaning and Necessity: A
Study in Semantics and Modal Logic. The University of
Chicago Press, Chicago, 2nd edition.

Copestake, A., Flickinger, D., Sag, I., and Pollard, C.
(2005). Minimal recursion semantics: an introduction.
Journal of Research on Language and Computation,
pages 281–332.

Davidson, D. (1979). The logical form of action sentences.
In N. Rescher, editor, The Logic of Decision and Action,
pages 81–120, Pittsburgh. University of Pittsburgh Press.
Reprinted in Davidson (2001).

Davidson, D. (2001). Essays on Actions and Events. Ox-
ford University Press, Oxford, 2nd edition.

Dobnik, S. and Cooper, R. (2017). Interfacing language,
spatial perception and cognition in type theory with
records. Journal of Language Modelling, 5(2):273–301.

Dobnik, S., Cooper, R., and Larsson, S. (2012). Modelling
language, action, and perception in type theory with
records. In D. Duchier et al., editors, Constraint Solving
and Language Processing - 7th International Workshop
on Constraint Solving and Language Processing, CSLP
2012, Orelans, France, September. Revised Selected Pa-
pers, number 8114 in Publications on Logic, Language
and Information (FoLLI), Springer, Berlin, Heidelberg,
2013.

Dowty, D. R., Wall, R. E., and Peters, S. (1981). Introduc-
tion to Montague Semantics. D. Reidel, Dordrecht.

Dowty, D. R. (1979). Word Meaning and Montague Gram-
mar: The Semantics of Verbs and Times in Generative
Semantics and in Montague’s PTQ. D. Reidel, Dor-
drecht.

Gordon, A. S. and Hobbs, J. R. (2017). A Formal Theory
of Common Sense Psychology: How People Think People
Think. Cambridge University Press, Cambridge.

Hausser, R. (2006). A Computational Model of Nat-
ural Language Communication: Interpretation, Infer-
ence, and Production in Database Semantics. Springer,
Berlin.

Hausser, R. (2015). From montague grammar to database
semantics. Language and Information, 19(2):1–16.
available at lagrammar.net.

He, L. (2018). Annotating and Modeling Shallow Seman-
tics Directly from Text. Dissertation of doctor of philos-
ophy in computer science and engineering, University of
Washington.

Hobbs, J. and Pustejovsky, J. (2003). Annotating and rea-
soning about time and events. In Proceedings of AAAI
Spring Symposium on Logical Formalizations of Com-
mon Sense Reasoning, Stanford, CA, March. Reprinted
in Mani et al. (eds), 2005, pages 301-315.

ISO, (2012). ISO 24617-1 Language resource management
- Semantic annotation framework - Part 1: Time and
events. International Organization for Standardization,
Geneva. Working group: ISO/TC 37/SC 4/WG 2 seman-
tic annotation.

ISO, (2014). ISO 24617-4 Language resource management
- Semantic annotation framework - Part 4: Semantic
roles (SemAF-SR). International Organization for Stan-

48

dardization, Geneva. Working group: ISO/TC 37/SC
4/WG 2 semantic annotation.

ISO, (2020). ISO 24617-7 Language resource management
- Semantic annotation framework - Part 7: Spatial infor-
mation. International Organization for Standardization,
Geneva, 2nd edition. Working group: ISO/TC 37/SC
4/WG 2 semantic annotation.

Kamp, H. and Reyle, U. (1993). From Discourse to
Logic: Introduction to Modeltheoretic Semantics of Nat-
ural Language, Formal Logic and Discourse Represen-
tation Theory. Kluwer Academic Publishers, Dordrecht.

Katz, G. (2007). Towards a denotational semantics for
TimeML. In Frank Schilder, et al., editors, Annotating,
Extracting and Reasoning about Time and Events, pages
88–106, Berlin. Springer.

Kracht, M. (2002). On the semantics of locatives. Linguis-
tics and Philosophy, 25:157–232.

Lee, K., Pustejovsky, J., and Bunt, H. (2018). Revising
ISO-Space and the role of the movement link. In Harry
Bunt, editor, Proceedings of the 14th Joint ACL–ISO
Workshop on Interoperable Semantic Annotation (ISA-
14): COLING 2018 Workshop, pages 35–44, Santa Fe,
New Mexico, U.S.A, August.

Lee, K. (1983). Equation solving. In Chungmin Lee et al.,
editors, Language, Information and Computation, pages
14–26. Taehaksa, Seoul.

Lee, K. (2008). Formal semantics for interpreting tem-
poral annotation. In Piet van Sterkenburg, editor, Unity
and Diversity of Languages, pages 97–108, Amsterdam.
John Benjamins Publishing Co. Invited talk at the 18th
Congress of Linguists, held in Seoul on July 21–26 2008.

Lee, K. (2011). A compositional interval semantics for
temporal annotation. In Eunryoung Lee et al., editors,
Recent Trends in Language an Knowledge Processing,
pages 122–156. Hankookmunhwasa, Seoul.

Lee, K. (2016). An abstract syntax for ISO-Space with
its <moveLink> reformulated. In Harry Bunt, editor,
Proceedings of the LREC 2016 Workshop ISA-12 – 12th
Joint ACL-ISO Workshop on Interoperable Semantic An-
notation, pages 28–37, Portoroz̆, Slovenia, May.

Lee, K. (2018). Revising ISO-Space for the semantic
annotation of dynamic spatial information in language.
Language and Information, 22.1:221–245.

Link, G. (1998). Algebraic Semantics in Language and
Philosophy. CSLI Publications, Stanford, CA.

Mani, I. and Pustejovsky, J. (2012). Interpreting Motion:
Grounded Representations for Spatial Language. Ox-
ford University Press, Oxford.

Miller, R. and Shanahan, M. (1999). The event-calculus in
classical logic — alternative axiomatizations. Electronic
Transactions on Artificial Intelligence, 3(1):77–105.

Moens, M. and Steedman, M. (1988). Temporal ontol-
ogy and temporal reference. Computational Linguistics,
14(2):15–28.

Montague, R. (1974). Formal Philosophy: Selected Papers
of Richard Montague. Yale University Press, New Haven
and London.

Parsons, T. (1990). Events in the Semantics of English:
A Study in Subatomic Semantics. The MIT Press, Cam-

bridge, MA.
Partee, B. H. (1973). Some structural analogies between

tenses and pronouns in English. The Journal of Philos-
ophy, 80(18):601–9. Reprinted in Compositionality in
Formal Semantics: Selected Papers by Barbara H. Par-
tee, Malden, MA: Blackwell. pp. 50–58.

Pratt-Hartmann, I. (2007). From TimeML to interval
temporal logic. In Harry Bunt, editor, Proceedings of
the Seventh International Workshop on Computational
Semantics, pages 111–180, Tilburg, the Netherlands.
Tilburg University.

Pustejovsky, J., Ingria, R., Saurı́, R., o, J. C., Littman, J.,
Gaizauskas, R., Setzer, A., Katz, G., and Mani, I. (2005).
The specification language TimeML. In James Puste-
jovsky Inderjeet Mani et al., editors, The Language of
Time, pages 545–557. Oxford University Press, Oxford.

Pustejovsky, J., Lee, K., Bunt, H., and Romary, L. (2010).
ISO-TimeML: An international standard for semantic
annotation. In Harry Bunt, editor, Proceedings of LREC
2010, Valletta, Malta, May. LREC 2010.

Pustejovsky, J., Lee, K., and Bunt, H. (2019). The seman-
tics of ISO-Space. In Harry Bunt, editor, Proceedings of
the 15th Joint ACL – ISO Workshop on Interoperable Se-
mantic Annotation (ISA-15), pages 46–53, Gothenburg,
Sweden, May. International Workshop on Computational
Semantics (IWCS 2029).

Pustejovsky, J. (1995). The Generative Lexicon. The MIT
Press, Cambridge, MA.

Pustejovsky, J. (2001). Type construction and the logic of
concepts. In Pierrette Bouillon et al., editors, The Lan-
guage of Word Meaning, pages 91–135. Cambridge Uni-
versity Press, Cambridge, UK.

Quirk, R., Greenbaum, S., Leech, G., and Svartvik, J.
(1985). A Comprehensive Grammar of the English Lan-
guage. Longman, London and New York, January.

	 Introduction
	 Motivation for ABS
	 Basic Design
	Basic Assumptions
	 Metamodel

	 Syntax
	 Basic and Functional Types
	 Syntax Proper
	 Preliminary Remarks
	Formulation of Syntactic Rules
	 Atomic Semantic Forms
	 Composed Semantic Forms

	Additional Illustrations

	 Model-theoretic Interpretation
	General
	Interpretation of unbound occurrences of variables
	 Meaning Postulates as Constraints

	 Applications
	 Boolean Conjunctive Composition
	 Distributive Composition for Conditionals

	 Comparison
	Related Work
	 Convertibility

	 Concluding Remarks
	Acknowledgements
	Bibliographical References

