
Proceedings of The 13th International Conference on Natural Language Generation, pages 374–383,
Dublin, Ireland, 15-18 December, 2020. c©2020 Association for Computational Linguistics

374

Reducing Non-Normative Text Generation from Language Models

Xiangyu Peng∗, Siyan Li∗, Spencer Frazier, and Mark Riedl
Georgia Institute of Technology

Atlanta, GA 30332
{xpeng62, sli613, sfrazier7, riedl}@gatech.edu

Abstract

Large-scale, transformer-based language mod-
els such as GPT-2 are pretrained on diverse cor-
pora scraped from the internet. Consequently,
they are prone to generating non-normative
text (i.e. in violation of social norms). We
introduce a technique for fine-tuning GPT-2,
using a policy gradient reinforcement learn-
ing technique and a normative text classifier to
produce reward and punishment values. We
evaluate our technique on five data sets using
automated and human participant experiments.
The normative text classifier is 81-90% accu-
rate when compared to gold-standard human
judgements of normative and non-normative
generated text. Our normative fine-tuning tech-
nique is able to reduce non-normative text by
27-61%, depending on the data set.

1 Introduction

Human societies implicitly establish codes of ac-
ceptable behavior in social contexts. Normativ-
ity is behavior that conforms to expected societal
norms and contracts, whereas non-normative be-
havior aligns to values that deviate from these ex-
pected norms. Sumner (1967) defines norms as:
“...informal rules that are not written, but, when
violated, result in severe punishments and social
sanction upon the individuals, such as social and
religious exclusions.” Non-normativity does not
connote behavior devoid of value or immoral, but
behavior that fails to conform to social standards
shared by other individuals in the relevant group,
organization or society. Norms can also be thought
of as actions taken by an entity which conform to
an identity (Katzenstein, 1996), thus allowing oth-
ers to categorize behavior as in-group or out-group.
Different societies and groups collectively have
different ideals about what actions constitute nor-
mative behavior; group members use these ideals
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to heuristically guide their actions to avoid social
ostracization. For example, many societies have
norms against violence, or certain behaviors being
conducted in public. Conflicts between individuals
can arise when enacting non-normative behaviors
or uttering non-normative speech.

This paper examines generative language mod-
els and the frequency at which they generate de-
scriptions of non-normative behavior. Large-scale,
transformer-based neural language models such as
ELMo (Peters et al., 2018), BERT (Devlin et al.,
2018), GPT-2 (Radford et al., 2019), GPT-3, Grover
(Zellers et al., 2019), CTRL (Keskar et al., 2019),
T5 (Raffel et al., 2019), and XLNet (Yang et al.,
2019) are trained on very large corpora such as text
scraped from the internet, books, or both.

These language models generate text that is sta-
tistically representative of the corpora they were
trained on. As such, text scraped from the inter-
net co-mingles text produced by many groups with
differing norms, as well as text produced by peo-
ple intentionally using non-normative speech, like
“trolling” language. Models trained on these data
can then produce undesirable, harmful output. Sto-
ries from the internet and books also contain norma-
tive and non-normative situations (e.g., antagonists,
as well as protagonists conducting conventionally
non-normative behaviors). Consequently, it is pos-
sible, and often likely, for language models to gen-
erate non-normative descriptions of behavior (mur-
der, crime, suicide, racist actions, rude behavior,
etc.), exhibit biases against certain demographics
groups (Sheng et al., 2019; Solaiman et al., 2019),
stereotypical biases (Nadeem et al., 2020) or racist
text when prompted with trigger phrases (Wallace
et al., 2019).

Value alignment (Russell et al., 2015) is the con-
cept that an agent is unable to perform actions that
cause harm to humans. Harmful behavior is not
limited to physical actions by robots, the focus
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of some AI value alignment research. We recog-
nize that natural language communication can also
cause harm. For example, Amazon Alexa, a virtual
assistant AI, was reported to suggest a user commit
suicide.1 Frazier et al. (2019) developed a classifier
for normative behavior which exhibits strong zero-
shot and few-shot transfer across a variety of text
corpora. The authors speculate that their model—
which they call a value-aligned prior—can bias
model output perceived as more normative. In this
paper we ask a different question: whether a value-
aligned prior can be used to reduce the generation
of descriptions of non-normative behavior by neu-
ral language models.

The common approach to fine-tuning language
models is to provide additional corpora of exem-
plars. If a corpus of exemplars is normative, the
language model can be trained to emulate this over
time. Generally, in the absence of very large nor-
mative corpora, we need an alternative approach to
fine-tuning language models. We use a reinforce-
ment learning approach to fine-tuning language
models, using the normative behavior classifier
of Frazier et al. (2019) as a non-differentiable re-
ward function. Our method back-propagates re-
ward relative to the degree of non-normativity of
text generated by the language model.

We evaluate our reinforcement learning fine-
tuning technique with three sets of experiments.
First, we replicate the experiments by Frazier et al.
(2019) on text generated by a language model in-
stead of originally held-out corpus text. Second,
we show with automated and human participant ex-
periments that fine-tuning on reward generated by
a normative classifier model can reduce the genera-
tion of non-normative text by 27− 61%. Third, we
ablate our technique and show with automated and
human participant experiments that the fine-tuning
technique works with classifiers other than the nor-
mative classifier—specifically models trained to
classify negative-sentiment and toxic language.

2 Background and Related Work

2.1 Value Alignment and Normative Priors
Humans have expectations that — just like other hu-
mans — agents will avoid harmful actions, conform
to personal values and to social norms (Bicchieri,
2005), even when not explicitly communicated.
This is referred to as the value alignment problem

1https://www.newsweek.com/amazon-echo%
2Dtells-uk-woman-stab-herself-1479074/

(Soares and Fallenstein, 2014; Russell et al., 2015;
Arnold et al., 2017; Abel et al., 2016). Harmful
agent behavior can theoretically be mitigated by
casting values as preferences over action sequences.
For example Christiano et al. (2017) collected hu-
man preferences to shape rewards for game-playing
agents in reinforcement learning.

Instead of preference learning, Frazier et al.
(2019) used the BERT (Devlin et al., 2018) lan-
guage model’s token embeddings to train a binary
classifier. This model is used to differentiate be-
tween normative and non-normative natural lan-
guage sentences containing events, utterances and
descriptions of behavior. They obtained training
data from Goofus & Gallant (G&G), a children’s
educational comic strip featuring two characters
of the same names. Goofus always deviates from
the “proper” way to behave, while Gallant always
performs the behavior of an exemplary child in
western society at the time the comics were created.
As a result, G&G is a naturally labeled source of
normative and non-normative text, for the specific
society it represents.

Frazier et al. (2019) demonstrated this method
could accurately classify descriptions of behav-
ior as normative or non-normative. Furthermore,
this classifier retained high performance in zero-
shot and few-shot transfer tasks. For example,
they show that their classifier, trained on G&G
comics, can classify normative event descriptions
in contemporary collections of popular plot points
and science fiction plot summaries, instances of
medium- and far-transfer, respectively. The au-
thors speculate that their classifier model can bias
agent behavior toward normative courses of action
in other contexts. However, this was not directly
shown. We ask whether a normative classifier can
be used to fine-tune the “behavior” of a large-scale
transformer-based language model.

2.2 Language Model Training & Fine-Tuning

Large-scale transformer-based neural language
models such as BERT and GPT-2 are trained on
large corpora of text scraped from the web and
books. They can be fine-tuned to a specific domain
of interest, commonly accomplished by providing
a corpus of exemplars from that domain. Over time,
the weights of the pre-trained model will shift and
increasingly generate passages which better emu-
late the corpus of exemplars. If the fine-tuning cor-
pus of exemplars is normative, the language model

https://www.newsweek.com/amazon-echo%2Dtells-uk-woman-stab-herself-1479074/
https://www.newsweek.com/amazon-echo%2Dtells-uk-woman-stab-herself-1479074/
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will, in theory, learn to prefer normative language
over time. Goofus & Gallant is one such normative
corpus, and if a language model is fine-tuned on it
then it may prefer to generate normative language.

GPT-2 (Radford et al., 2019), in particular, is
a large-scale transformer-based language model
trained on a large corpus of text scraped from web
pages and social media. Applying the concept
of value alignment as preference learning, Ziegler
et al. (2019) use a reinforcement learning method
on the 774M-parameter version of GPT-2 to favor
human-preferred text. Crowd workers were asked
to select generated text completions from a set of
given prompts that had positive sentiment. These
preference values were used to fine-tune GPT-2.
This is one possible technique for reinforcement-
based fine-tuning; sentiment is, however, not nec-
essarily a good measure of adherence to norms.
We replace the linear reward model for fine-tuning
GPT-2 (Ziegler et al., 2019) with a pre-trained nor-
mative text classifier.

The Plug and Play Language Models (PPLM)
(Dathathri et al., 2019) also apply attribute classi-
fiers to fine-tune language models; the technique is
demonstrated via generating text with a target sen-
timent and also decreasing the frequency of toxic
language. There are two limitations: (a) PPLM
trains a model to operate on a fixed set of prefix
input, and (b) the classification must be done on
a word-by-word basis and thus cannot easily be
applied to problems where the normative valence
of individual words relies on a single or multiple
sentence context (e.g. quoting and admonishing
toxic speech). Our fine-tuning technique, in con-
trast, works on arbitrary prefixes and assesses the
the normativity of entire sentences.

2.3 Datasets

We make use of five datasets, chosen to represent a
diverse set of domains. The normative text classi-
fier by Frazier et al. (2019) was tested on a corpus
of science fiction plot summaries (Ammanabrolu
et al., 2019) as well as a new Plotto dataset, based
on a book by the same name that catalogues plot
points for scaffolding fictional story-writing. Story
corpora are particularly good for testing problems
pertaining to textual descriptions of normative and
non-normative behavior. Stories contain antago-
nists that frequently violate societal norms and pro-
tagonists who are more likely to exemplify con-
temporary social norms. We recognize many sto-

ries require protagonists to perform non-normative
behaviors like violence against others to achieve
normative ends, further indicating the importance
of accounting for a broader frame of context when
determining normativity.

The science-fiction plot summary corpus (Am-
manabrolu et al., 2019) is a collection of 2,276 sto-
ries scraped from crowd-sourced plot summaries
on fan sites. These stories have an average length
of 89.23 sentences. Sentences in this corpus tend to
give high-level overviews of the actions that charac-
ters are performing (e.g. “Lyta accuses Sinclair of
attempting to murder the ambassador”). The sci-fi
corpus also presents a transfer challenge because it
involves a lot of novel entities—aliens, spaceships,
laser weapons, etc.—that do not exist in Goofus &
Gallant. It is notable that a normative text classifier
trained on G&G would do well on zero-shot trans-
fer to the sci-fi corpus. This makes it an attractive
dataset for our experiments for the same reasons.

The Plotto dataset consists of 900 sentences ex-
tracted from a book, which catalogues plot points
used in popular fiction. Frazier et al. (2019) pruned
some exceptionally anachronistic and misogynis-
tic sentences from the corpora. These sentences
approximate the level of abstraction in the sci-fi
corpus but have more contemporary narratives.

The ROCstories (Mostafazadeh et al., 2016) cor-
pus contains 52,666 five-sentence stories, often
about everyday life situations (e.g. going for a jog,
taking a test in school, etc.). Unlike the previous
two corpora, it covers a different space of more
common, mundane events which usually do not
have strong normativity connotations.

Sentiment is often used as a surrogate for norma-
tivity under the belief that non-normative behavior
would be associated with negative sentiment. The
relationship between normativity and sentiment is
not that simple, as we will show in Section 4.3. We
include sentiment experiments using large review
datasets from IMDb, Yelp, and Amazon (Kotzias
et al., 2015) because (1) previous value alignment
research has incorporated sentiment analysis, and
(2) we want to test our techniques on classifiers
other than the normative text classifier.

Non-normativity is a superset of toxic language
in the sense that toxic language is non-normative,
but not all non-normative descriptions are toxic.
We also conduct experiments using toxic language
classifiers - fine-tuned on sentiment corpora like
the dataset from the Toxic Comment Classification
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Challenge2 as an alternative to the normative text
classifier fine-tuned on G&G.

3 Normative Fine-Tuning

The GPT-2 model is trained by minimizing its
cross-entropy loss given by (Radford et al., 2019):

lossw(X, y) =− log

(
exp(X[y])∑
i∈V exp(X[i])

)
=− log (σ(X)y) (1)

where X is a vector containing output logits and y
is the index of the word from the ground truth in
X . V is the model’s vocabulary, σ is the softmax
function, and σ(X)y is the ground truth probability
of the word.

To punish GPT-2 for producing non-normative
text, we use a normative text classifier to eval-
uate the model’s performance and produce a re-
ward value, which is applied to the loss and back-
propagated through GPT-2. Given that the norma-
tivity of a sentence can only be determined by read-
ing the entire sentence, the classifier must there-
fore produce a single numeric value per sentence.
Specifically, we augment the cross-entropy loss
computation with predictions from the pre-trained
classifier. We define the sentence loss as:

losss(s) =
1

n

∑
j∈s

lossw(Xj , yj) + u(s) (2)

where s is the continuation sentence generated by
the neural language model, n = |s| − 1 is the
number of the words in the continuation sentence,
Xj is the jth logit vector, and yj is the ground truth
index for the jth word. u(s) is a function of the
output of the classifier converted into a punishment
value; a value of zero indicates no punishment, and
higher positive values indicating increasingly non-
normative sentences. The lossw counter-balances
the reward and prevents the generated texts from
descending into incoherent fragments.

The punishment function u(s) generates a value
proportional to the average word loss so that it does
not become overwhelmed by lossw:

u(s) = ρβ(1−C(s))( 1
n

∑
j∈s

lossw(Xj , yj)) (3)

where s is a continuation sentence, C(s) is the bi-
nary {0, 1} label given by the normative classifier,

2https://www.kaggle.com/c/jigsaw%
2Dtoxic-comment-classification-challenge/
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Figure 1: Pipeline for fine-tuning GPT-2 with the clas-
sifier. Loss is backpropagated through the output logits
to GPT-2.

ρ is a hyper-parameter to control the strength of
the penalty, and β = (1− i× 0.05) decreases the
penalty as the number of fine-tuning iterations i
increases. That is, if the generated sentence is clas-
sified as normative, a loss close to zero will be ap-
plied to each logit generated by the language model.
If the generated sentence is non-normative, a higher
total sentence loss will be applied to each logit. β
decreases the step size during back-propagation to
avoid over-shooting the local minima. lossw acts
as a cycle loss component, punishing the sentences
with undesirable characteristics.

The fine-tuning process is as follows: given a set
of input sentences from a corpus, GPT-2 is used to
generate successor sentences. We generate 60 to-
kens and truncate at the first punctuation mark (e.g.
periods, question marks). These continuation sen-
tences are fed through a classifier, which outputs
the binary label we treat as a reward C(s) ∈ {0, 1}.
Sentences labeled as 0 are those with undesirable
characteristic. As per Equation (3), the reward
is used to calculate the punishment score by sub-
tracting from 1.0 and scaling by the average word
loss of the sentence. This value is then used to
compute a sentence loss as in Equation (2). The
sentence loss is averaged to obtain the token-level
loss, which is then added to each logit from the con-
tinuation sentence and the loss is back-propagated
into GPT-2. The process is illustrated in Figure 1.

To prevent the model from deviating too much
from the language in the original dataset, we feed
the fine-tuned model with the same set of input sen-
tences at every loop and use the output sentences
to even further fine-tune the model. As the model
is trained, the output sentences will differ, and the

https://www.kaggle.com/c/jigsaw%2Dtoxic-comment-classification-challenge/
https://www.kaggle.com/c/jigsaw%2Dtoxic-comment-classification-challenge/
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Accuracy Accuracy # of
Dataset (continuations) (test corpora) sent.
Plotto 81.25 89.67 100
Sci-fi 82.11 87.51 300
ROCstories 90.57 94.56 100
Toxic 86.84 94.27 400
Sentiment 88.14 93.90 200

Table 1: Results of Mechanical Turk study. Accuracy
on generated continuations equals to the percentage of
Mechanical Turk worker labels equivalent to labels pro-
duced by the normative classifier when classifying gen-
erated sentences, since Mechanical Turk worker labels
are considered as ground truth label of generated con-
tinuations. Accuracy on original corpora is measured
by the classifier on the held-out test sets of corpora sen-
tences.

reward value C(s) may change after every iteration
as the model shifts its distribution.

4 Experiments

We conduct three sets of experiments to (1) verify
the normative text classifier on generated continu-
ations, (2) evaluate our reward-based fine-tuning
with the normative text classifier, (3) evaluate our
reward-based fine-tuning on other classifiers.

4.1 Experiment 1: Replication of the
Normative Classifier

The normative text classifier by Frazier et al. (2019)
was evaluated on original sentences from a num-
ber of corpora, including the science fiction story
corpus (sci-fi) we use in subsequent evaluation ex-
periments. Generated text potentially constitutes a
shift in the text distribution. Hence, the accuracy
of classifiers on generated continuations must be
validated.

The 117M parameter GPT-2 is fine-tuned with
training sets from Plotto, ROCstories, sci-fi, Toxic
and Sentiment datasets, separately, in order to shift
the output probability distribution of GPT-2 and to
make it generate text similar to the corpus we used
for training. The sci-fi and Plotto corpora were
used for fine-tuning two different versions of the
normative text classifier, starting with the classifier
by Frazier et al. (2019). Thus the original classi-
fier originally trained on G&G was updated to the
respective domains; a few-shot transfer paradigm.
We fine-tuned the classifiers for 2-5 iterations.

For the ROCstories, Toxic and Sentiment
datasets, we directly train a BERT-based classi-
fier on the given labels instead of fine-tuning the
classifier that was first trained on G&G. We found

the G&G-trained classifier did not transfer well to
ROCstories and thus collected our own normative
and non-normative labels. Toxic and Sentiment
experiments do not look at normativity so we did
not use the normative classifier.

A human participant study was then conducted
to validate the fine-tuned classifier’s accuracy. Sen-
tences from each corpus test set were randomly
chosen and used as prompts for GPT-2 to generate
continuation sentences. 70 crowd workers on Me-
chanical Turk labeled those generated sentences as
normative or non-normative (or positive or negative
sentiment, or toxic or non-toxic). Each sentence
received at least three labels. We treat the majority
label from humans participants as the ground-truth.

Table 1 shows the accuracy of classifiers on gen-
erated continuations and on sentences directly from
the test sets. Accuracy decreases on generated con-
tinuations, but are on par with accuracy on sen-
tences taken directly from the test corpora, and on
par with the results from Frazier et al. (2019). This
indicates that any distributional shift during gen-
eration is likely inconsequential and the classifer
achieves good zero-shot transfer to more datasets.

4.2 Experiment 2: Decreasing
Non-Normative Generation

In this set of experiments, we seek to determine if,
and by how much, the amount of non-normative be-
havior descriptions generated by GPT-2 decreases
when fine-tuned with the normative text classi-
fier. We emphasis the decrease of non-normative
language because both normative and neutral lan-
guages are acceptable.

Consistent with Experiment 1, we first fine-tune
the 117M parameter version of GPT-2 with sen-
tences sampled from three datasets: ROCstories,
sci-fi, and Plotto. This gives us three versions
of GPT-2: GPT-ROCstories, GPT-scifi and GPT-
plotto, respectively. The 117M GPT-2 model is
fine-tuned for two, three and five iterations sep-
arately on ROCstories, Plotto and sci-fi to avoid
overfitting. We then fine-tune each of these mod-
els a second time using the reinforcement learning,
reward-based technique in Section 3. We refer to
these models as GPT-ROCstories-norm, GPT-sci-fi-
norm, and GPT-Plotto-norm, respectively. Due to
the small size of the datasets, GPT-2 easily overfits
during training. Therefore, we only fine-tune one
of its 12 attention heads to avoid overfitting.

We evaluate the performance of our fine-tuned
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% non-norm. Test
Model Auto Human Perpl. size
GPT-ROCstories 64.15 58.49 81.097 50
GPT-ROCstories-norm 26.42 22.64 82.958 50
GPT-Plotto 81.25 72.91 34.271 50
GPT-Plotto-norm 59.18 53.06 32.322 50
GPT-scifi 35.11 26.58 23.885 300
GPT-scifi-norm 15.79 18.27 24.522 300

Table 2: The proportion of non-normative behavior and
events (% Non-norm) generated by different fine-tuned
models on different datasets. Ratios are measured us-
ing the normative text classifier (automated) and Me-
chanical Turk studies (human labeling).

GPT-X-norm models (X=plotto, scifi, ROCsto-
ries) by analyzing the change in the proportion of
generated text that is non-normative. We measure
the ratio of non-normative to normative text in two
ways. First, we use the normative text classifier on
continuations generated by baselines and fine-tuned
models. This is an automated evaluation; Exper-
iment 1 suggests the normative text classifier has
high accuracy on the continuations. However, the
gold standard is the human participant labels. For
our second evaluation metric, we hired 70 Mechan-
ical Turk workers to label generated continuation
sentences as normative (including neutral) or non-
normative. At least 3 crowd workers labeled each
sentence and the majority vote is considered as the
ground truth label.

Table 2 shows the proportions of non-normative
sentence continuations for both the baseline and
the fine-tuned models. The results are summarized
below. We note percentage decreases, which are
the relative percentage decrease compared to the
original statistics.3

• GPT-ROCstories generates non-normative
continuations 64% of the time according to
the normative text classifier, which reduces
to 26% after further fine-tuning, a 59% de-
crease. Humans label GPT-ROCstories con-
tinuations as non-normative 58% of the time,
which drops to 22%, a 61% decrease.

• GPT-Plotto generates non-normative contin-
uations 81% of the time according to the nor-
mative text classifier, which reduces to 59%
after further fine-tuning, a 27% decrease. Hu-
mans label GPT-Plotto continuations as non-
normative 72% of the time, which drops to

3Percentage decrease is calculated by (p− p̂)/p, where p
and p̂ are the proportion of non-normative behavior (% Non-
norm) generated by GPT-X and GPT-X-norm, respectively.

Label Sentence
Non-norm. Mollari now refuses to pay the two parents’

expenses and lives.
Non-norm. Garibaldi slaps the door behind them and

locks it behind them.
Non-norm. He considers himself morally superior to

his family because he is wealthy.
Norm. Nathaniel repays his debt through an hon-

est act of honest enterprise.
Norm. He then makes a generous and appropriate

sacrifice.
Norm. He returns home to support his country.

Table 3: Examples of generated normative and non-
normative sentences from GPT-Plotto and GPT-scifi.

53%, also a 27% decrease.

• GPT-scifi generates non-normative continua-
tions 35% of the time according to the nor-
mative text classifier, which reduces to 15%
after further fine-tuning, a 55% decrease. Hu-
mans label GPT-scifi continuations as non-
normative 26% of the time, which drops to
18%, a 31% decrease.

We observe that the classifier results are generally
in line with the human evaluation results. The mod-
els fine-tuned on the Plotto dataset generally gener-
ate more non-normative continuation sentences and
are more difficult to induce normativity. The mod-
els fine-tuned on the sci-fi dataset have the lowest
frequency of non-normative generations, but can
still be induced to produce lower frequencies with
this method.

The perplexity remains steady after fine-tuning
with the normative text classifier, indicating that
the GPT-X-norm models are not overfitting nor
losing their fluency. Table 3 shows some examples
of sentences generated by the fine-tuned GPT-2
models for the sci-fi and Plotto domains.

4.3 Experiment 3: Other Classifiers

In the previous sections we evaluate how the nor-
mative text classifier and our fine-tuning technique
work together to decrease the generation of non-
normative text. In this section, we ablate our sys-
tem and evaluate our fine-tuning method indepen-
dently of the normative text classifier. We seek
to determine whether the fine-tuning technique is
general enough to work with other classifiers.

We replicate the experimental methodolgy in
Section 4.2 but with the Toxic Comment Classifica-
tion dataset and the Sentiment dataset. Sentiment
is often used as a surrogate for normativity because
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% Non-norm Test
Model Auto Human perpl. size
GPT-toxic-ext 59.03 57.01 54.819 200
GPT-toxic-ext-norm 27.75 30.70 62.302 200
GPT-senti-ext 71.13 76.29 83.717 100
GPT-senti-ext-norm 45.36 42.27 83.443 100
GPT-toxic-bal 37.89 33.04 50.535 200
GPT-toxic-bal-norm 24.79 28.76 60.100 200
GPT-senti-bal 44.33 36.08 91.927 100
GPT-senti-bal-norm 35.05 29.90 90.261 100

Table 4: The proportion of non-normative behavior and
events (% non-norm.) generated by different fine-tuned
models on different datasets.

non-normative behavior might be inferred to be
perceived with negative sentiment, and because
labeled sentiment data is more readily available.
Toxic language is a subclass of non-normative be-
havior.

First, we train two classifiers using the same
technique as Frazier et al. (2019). Specifically, we
fine-tune BERT on the datasets with ground-truth
sentiment and toxicity labels. Both classifiers are
fine-tuned 5 times on training set of corpora and
tested on test sets (see Table 1).

We follow the methodology in Section 4.2 to
produce new GPT-2 baseline models. To make the
improvement from applying our technique more
visible, we fine-tuned the 117M GPT-2 with only
toxic or negative sentences when producing the
baseline models, and obtained GPT-senti-ext and
GPT-toxic-ext, which frequently produce negative
or toxic generated continuations. We also fine-
tuned the 117M GPT-2 with balanced datasets (half
negative texts and half toxic texts, respectively),
and refer to these two models as GPT-senti-bal
and GPT-toxic-bal. We then further fine-tune these
models using their respective classifiers per the
technique in Section 4.2.

Table 4 shows the percentage of textual continu-
ations that are either toxic or contain negative sen-
timent. Fine-tuning GPT-senti-ext with the senti-
ment classifier can reduce negative sentiment from
76% to 42%, a 45% reduction. Fine-tuning GPT-
senti-bal with the sentiment classifier can reduce
negative sentiment from 36% to 29%, a 17% re-
duction. Fine-tuning GPT-toxic-ext with the toxic
classifier can reduce toxic language from 57% to
30%, a 46% reduction. Fine-tuning GPT-toxic-bal
with the toxic classifier can reduce toxic language
from 33% to 28%, a 13% reduction. This shows
that the fine-tuning technique working on sentence
loss is agnostic to which classifier is used.

We did not compare our results directly to
the Plug and Play Langauge Models (PPLM)
work (Dathathri et al., 2019), which also uses a
toxic word classifier to fine-tune a language model.
PPLM fine-tunes on a word-by-word basis instead
of at the sentence unit, making it difficult to account
for the context needed for determining normativity.
For toxic language reduction, their model is trained
to operate on a pre-given set of prompts such as
“black” or “asian”. For these prompts, given dur-
ing training, they can reduce GPT-2’s toxic lan-
guage frequency from ∼10% to ∼6%. This is
non-significant (p < 0.23) though it is challeng-
ing to reduce a number that is already close to zero.
When we prompt our GPT-toxic-bal and GPT-toxic-
bal-norm with “asian” and “black”, we see reduc-
tions from 52% to 32% and from 70% to 50%,
respectively. Our classifier has only ever seen the
word “black” once and has never seen the word
“asian”. We see higher occurrences of toxicity be-
cause GPT-2 is fine-tuned on the equal numbers
of toxic and non-toxic sentences from the Toxic
dataset (whereas PPLM compares against a non-
fine-tuned version of GPT-2) and because GPT-2
has a pre-existing unjust bias toward these words.

To address the relationship between sentiment
and normativity, we sample 300 sentences from the
sci-fi corpus and 300 sentences from the genera-
tion results of the trained GPT-2 model and classify
them using the normative text classifier and Sen-
tiWordNet (Esuli and Sebastiani, 2006). Figure 2
shows the percentage of sentences were classified
as (a) both normative and positive/neutral sentiment
(orange), (b) both non-normative and negative sen-
timent (blue), (c) normative but negative sentiment
(green), and (d) non-normative but positive/neutral
sentiment (brown). Only about half the sentences
tested (53.08%) had sentiment and normativity la-
bels that matched, whereas 46.92% of sentences
have conflicting labels.

5 Discussion

We demonstrate how value-aligned priors such
as normative text classifiers can act as a reward
provider to nudge the GPT-2 language model to-
wards producing more normative and neutral de-
scriptions of behaviors and events. Applying
this reward-based fine-tuning technique reduces
the likelihood of generating sentences containing
non-normative behavior by approximately ∼27-
61%, depending on the dataset. Some datasets
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Figure 2: Differences between normative classification
and sentiment classification.

are more non-normative and more resistant to re-
duction of non-normativity. Datasets with low non-
normativity to begin with are, naturally, more resis-
tant.

Beyond the numerical results, this shows ev-
idence that policy-gradient based reinforcement
learning approaches to fine-tuning can be an ef-
fective means for reducing the generation of non-
normative descriptions. By using a normative text
classifier—a value aligned prior—one can fine-
tune a language model to the desired domain and
then fine-tune using the prior again to reduce non-
normative generation that stems either from GPT-2
or from the domain corpus. We provide this ap-
proach as an alternative—or in complement to—
debiasing techniques that attempt to correct for
prejudicial bias in datasets prior to training. Our
approach is roughly equivalent to teaching a lan-
guage model to censor itself.

The policy-gradient based reinforcement learn-
ing technique using a value-aligned prior can be
even more valuable with GPT-3, where fine-tuning
to a domain is less necessary. GPT-3 has been
demonstrated to be capable of non-normative, toxic,
and prejudicially biased generation.

By using the normative text classifier trained
on Goofus & Gallant comics, our results are lim-
ited to Western—and in particular American—
mainstream ideals of normative behavior. We ac-
knowledge that culture is not monolithic, even
within the United States of America, and this repre-
sents only one of many possible sources of norma-
tivity. We cannot conclusively say that our results
will hold if we had normative text classifiers trained
from different source materials. Because general
sources of normative behavior are currently hard to
come by, we attempt to show generalization of our
technique with experiments using sentiment and
toxic language.

One limitation of our work is that the normative

text classifier can only classify individual sentences
without context. Given the context-dependent na-
ture of normativity, the normative text classifier
may overlook non-normative sentences that may
appear normative out-of-context. This may lead
to GPT-2 still producing this sentence in its non-
normative context. Another limitation is that fine-
tuning GPT-2 on Plotto, ROCstories and sci-fi
datasets leads to it generating both neutral and nor-
mative sentences. If a model that generates solely
normative sentences is desired, one can substitute
the normative classifier with a ternary classifier
with labels for normative, non-normative, and neu-
tral sentences, and adjust the reward signals accord-
ingly. Furthermore, fine-tuning classifiers requires
datasets with labeled exemplars, hence, in order
to replicate our work to generate texts with some
other desirable characteristics, datasets with labels
would be prerequisites.

The motivation of our work is to show how those
who are concerned with generating undesirable text
language models can obtain some control over the
generation process. We look at normativity, but
also show how other criteria can be applied. How-
ever, as is true for most algorithms, those with
malicious intent can find ways to corrupt the inten-
tions of the work. For example, equation (3) can be
trivially modified to punish normative text instead
of non-normative text.

6 Conclusions

We have shown that large-scale transformer-based
neural language models can be made to gener-
ate text containing fewer descriptions of non-
normative behavior by applying data-efficient,
policy-gradient reinforcement learning. As most
large-scale language models are trained on datasets
from the internet and from books, the potential
for intentional or unintentional non-normative lan-
guage persists. We see this as a first step toward
decreasing the potential for unintended, unaccept-
able, anachronistic or harmful language.

While our primary result is to show that we can
decrease the generation of non-normative behav-
ior descriptions, our normative classifier of choice
is rooted in Western/American norms and values.
Normative classifiers are rare and datasets contain-
ing normative or preference learning examples are
difficult to obtain. However, our results show that
even small datasets of normative examples can be
converted into few-shot classifiers and applied to
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new domains. By replicating our results with sen-
timent and toxic classifier, we show that our tech-
nique is not specific to any one classifier.
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