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Abstract

We introduce five new natural language in-
ference (NLI) datasets focused on temporal
reasoning. We recast four existing datasets
annotated for event duration—how long an
event lasts—and event ordering—how events
are temporally arranged—into more than one
million NLI examples. We use these datasets
to investigate how well neural models trained
on a popular NLI corpus capture these forms
of temporal reasoning.

1 Introduction

The ability to reason about how events unfold in
time is core to how humans structure their knowl-
edge about the world (Casati and Varzi, 1996;
Zacks and Tversky, 2001; Radvansky and Zacks,
2014), and modeling such temporal reasoning has
been central to many classical AI approaches (Mc-
Carthy and Hayes, 1987; Kahn and Gorry, 1977;
McDermott, 1982; Allen, 1984; Kowalski and Ser-
got, 1989; Pani and Bhattacharjee, 2001).

Natural language supports various forms of tem-
poral reasoning, including reasoning about the
chronology and duration of events, and many Nat-
ural Language Understanding (NLU) tasks and
models have been employed for understanding
and capturing different aspects of temporal rea-
soning (UzZaman et al., 2013; Llorens et al., 2015;
Mostafazadeh et al., 2016; Reimers et al., 2016;
Tourille et al., 2017; Ning et al., 2017, 2018a; Meng
and Rumshisky, 2018; Ning et al., 2018b; Han et al.,
2019; Naik et al., 2019; Vashishtha et al., 2019;
Zhou et al., 2019, 2020). More broadly, the ability
to perform temporal reasoning is important for un-
derstanding narratives (Nakhimovsky, 1987; Jung
et al., 2011; Cheng et al., 2013), answering ques-
tions (Bruce, 1972; Khashabi, 2019; Ning et al.,
2020), and summarizing events (Jung et al., 2011;
Wang et al., 2018).

Order
I We waited until 2:25 PM and then left.

The waiting started before the leaving started.
I Reggie said he will pay us soon.

The paying ended before the saying started.

Duration
I The greeter said there was about 15 mins waiting.

The saying did take or will take shorter than an hour.
I Randy , this is the issue I left you the voice mail on.

The leaving did take or will take longer than a day.

Table 1: NLI sentence pairs from our recasted datasets.
I indicates the line is a context, and the following line
is its corresponding hypothesis. Hypotheses in green
indicate that the context entails the hypothesis; those in
red indicate that it does not entail the hypothesis.

Given that temporal reasoning is integral to natu-
ral language understanding (NLU) and that Natural
Language Inference (NLI) is a common framework
for evaluating how well models capture semantic
phenomena integral to NLU (Cooper et al., 1996;
Dagan et al., 2006; White et al., 2017; Poliak et al.,
2018), it is important to evaluate how well different
classes of NLI models trained on common generic
NLI datasets capture temporal reasoning.

We present five new NLI datasets recasted
from four existing temporal reasoning datasets:
(i) TempEval3 (TE3; UzZaman et al., 2013);
(ii) TimeBank-Dense (TB-D; Chambers et al.,
2014); (iii) Richer Event Description (RED;
O’Gorman et al., 2016); and (iv) UDS-Time (UDS-
T Vashishtha et al., 2019). Our new NLI datasets
focus on two key aspects of temporal reasoning:
(a) temporal ordering and (b) event duration. We
present strong baseline models for our temporal rea-
soning focused NLI datasets and also investigate
the performance of common neural NLI models
on these datasets. Our experiments demonstrate
that common neural based NLI models trained on
a popular dataset do not sufficiently capture tem-
poral reasoning and require additional supervised
training on datasets specific to temporal reasoning.
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2 Motivation

A text often does not contain explicit mentions of
how long events last or whether some events are
contained within another. Consider (1).

(1) We waited until 2:25 pm and then left.

Although (1) does not explicitly mention how long
the waiting lasted, one can reasonably guess that
it lasted somewhere between minutes to hours—
definitely not months or years. Zhou et al. (2020)
note that common sense inference is required to
come to such conclusions about an event’s duration
and text might even contain reporting biases when
highlighting rarities (Schubert, 2002; Van Durme,
2011; Zhang et al., 2017; Tandon et al., 2018), po-
tentially making it hard to learn using common
language modeling-based methods.

Popular NLI datasets contain hypotheses which
are elicited by humans (Bowman et al., 2015;
Williams et al., 2018). Although the context sen-
tences for these datasets come from multiple gen-
res, the constructed hypotheses do not necessarily
capture semantic phenomenon which are essential
for any robust NLU inference system. Recent work
has catered to the lack of such inference capabilities
by focusing on semantic phenomenon such as para-
phrastic inference and anaphora resolution (White
et al., 2017), veridicality (Poliak et al., 2018; Ross
and Pavlick, 2019), and various other implicatures
and presuppositions (Jeretic et al., 2020).

Even though temporal reasoning is crucial for
event understanding, no datasets focused on tem-
poral reasoning exist in the NLI format. To fill this
lacuna, we recast four existing datasets to create
NLI pairs that explicitly require reasoning about
event duration and chronological ordering. Table 1
shows examples from two of our recasted datasets.

3 Dataset Creation

We construct five new NLI datasets recast from
four existing datasets that focus on two key aspects
of temporal reasoning: (a) temporal ordering and
(b) event duration. Across these datasets, we have
more than a million NLI examples and we retain
the training, development, and test splits from the
original (for datasets in which such splits exist).
Table 2 reports the total number of NLI pairs in
each of our recast datasets.

Phenomenon Dataset # NLI Pairs

duration UDS-Time 504,136
order UDS-Time 562,944
order TempEval3 11,208
order TimeBank-Dense 9,688
order RED 4,372

Table 2: Recast datasets statistics

3.1 Temporal Ordering

To generate hypotheses for our temporal ordering
datasets, we create 8 templates which refer to the
start-points and end-points of events in a pair of
two events. The templates are shown in Table 3.

We recast 4 datasets: (i) TE3; (ii) TB-D; (iii)
RED; and (iv) UDS-T. UDS-T directly annotates
for the relation between start and end points of
events in an event pair, making hypothesis gener-
ation with our templates straight-forward. In con-
trast, TE3, TB-D, and RED annotate event pairs
for categorical temporal relations based on those
proposed by Allen (1983). Using each category’s
definition, we map that category to a template pred-
icate—a function from hypothesis templates to {en-
tailed, not-entailed}—summarized in Table 3.

TE3, which comprises of the TimeBank (Puste-
jovsky et al., 2003) and AQUAINT (Graff) corpora,
contains 13 temporal links: before (B), ibefore (IB),
after (A), iafter (IA), isincluded (II), includes (I),
begins (BE), begun-by (BB), ends (E), ended-by
(EB), during (D), simultaneous (S), and identity.1

Each of these relations unambiguously maps to a
template predicate.

TB-D uses a reduced set of relations: before
(Bt), after (At), isincluded (II), includes (I), si-
multaneous (S), and vague (the last of which we
ignore); as does RED: before (Br), begins-on (BO),
ends-on (EO), contains (C), and simultaneous (S).
This reduction results in the categories being am-
biguous with respect to certain hypothesis tem-
plates. For instance, for Template 3 (X ended before
Y started) knowing that X is before (Bt, Br) Y in
the TB-D and RED sets does not give enough infor-
mation about the ending point for X because these
relations are not defined to have a strict ending
boundary—in contrast to before (B) in TE3. We
thus exclude hypothesis templates for ambiguous
TB-D or RED relations.

For RED, we collapse relations with the same
prefix into a single relation, e.g before/causes, be-
fore/precondition is collapsed into Br. We ignore

1For our purposes, identity and simultaneous denote the
same relation.
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Hypothesis Template Entailing Relations
TE3 TB-D RED

1 X started before Y started B,I,EB,IB,D Bt,I Br,C, EO?
2 X started before Y ended B,I,II,S,IB,BB,BE,EB,D,E Bt,I,II, At? Br, C, EO, BO, S
3 X ended before Y started B ?Bt? Br?
4 X ended before Y ended B,II,BE,IB,D Bt,II Br,BO?
5 Y started before X started A,II,IA,E At,II EO?
6 Y started before X ended A,I,II,S,IA,BB,BE,EB,D,E At,I,II, Bt? C, EO, BO, S, Br?
7 Y ended before X started A At? -
8 Y ended before X ended A,I,IA,BB At,I C, BO?

Table 3: Hypothesis templates for temporal ordering of events X and Y and the relations that entail those templates.
If a relation does not entail a hypothesis template, then that template is mapped to not-entailed for that relation. A
relation with a ? denotes that the relation cannot determine whether the template is entailed or not-entailed.

relations with overlap prefix as they do not have a
clear boundary for start or end points of events.

3.2 Temporal Duration

To generate hypotheses for our temporal duration
dataset, we create 18 hypothesis templates that re-
fer to a range of likely durations for an event, based
on two metatemplates: (i) X did last or will last
longer than LOWER-BOUND and (ii) X did last
or will last shorter than UPPER-BOUND, where
LOWER-BOUND and UPPER-BOUND range over a
second, a minute, an hour, a day, a week, a month,
a year, a decade, and a century.2

We recast a single dataset—UDS-T—which con-
tains annotations for the duration of an event drawn
from the following 11 labels: instantaneous, sec-
onds, minutes, hours, days, weeks, months, years,
decades, centuries, and forever. For each event, we
create two or four NLI pairs (depending upon the
true label) to capture the duration information.

The entailed hypothesis of the NLI pair takes a
range of duration values derived from the gold du-
ration label for the given event. The lower limit of
the range is one rank less than the gold label—e.g.
for minutes, the LOWER-BOUND is a second—and
the upper limit is one rank greater than the gold
label—e.g. for minutes, the UPPER-BOUND is an
hour. Two entailed hypotheses are then generated
from these two limits, one corresponding to the
lower limit—longer than a second, and the other
corresponding to the upper limit—shorter than an
hour. The corresponding not-entailed hypothe-
ses are then generated by inverting the entailed
hypothesis—e.g. for minutes: shorter than a sec-
ond and longer than an hour. In cases, where the

2We use ranges of durations instead of a single gold label
value as this gives us a more robust way of capturing durations,
especially for cases where the true duration label is ambiguous
in a given context as described in example (1).

gold duration label is instantaneous or forever, only
one entailed and one not-entailed pair in created.

3.3 Development and Test Splits

For the development and test set in UDS-T, there
are three gold labels for each event-pair, so for
the entailed hypothesis in these cases, we take the
lower limit of duration range as one rank less than
the lowest of the three gold labels and the upper
limit as one higher than the highest of the three
gold labels. For instance, if the three gold labels in
the development set for an event are: hours, weeks,
months, then the lower limit is minutes and the
upper limit is years. The entailed and not-entailed
hypothesis can then be generated using the same
method described for the train set earlier.

TE3 does not have a development set, so we ran-
domly sample documents from the train data and
set it aside as development set. We use the same
number of documents as that in the test set. Simi-
larly, RED does not contain development and test
splits, so we randomly sample 20% of the docu-
ments from train, evenly splitting them to create a
development and a test set.

3.4 Grammatical Hypothesis Generation

We define rules to help generate hypotheses that
are grammatical. We define our rules based on the
Part-of-Speech (POS) tag of the events (predicates)
in the context.

UDS-T contains gold POS tags, and the gold
dependency trees for all contexts. So for any predi-
cate which is tagged as a VERB in the context, we
use its inflected form as a gerund in the hypoth-
esis. For example, ‘we waited until ...’ becomes

‘the waiting started ...’. Predicates with other POS
tags in UDS-T occur with a copular construction,
so we add the prefix being before the predicate to
make it grammatical, for example, ‘we’re happy



4073

...’ becomes ‘the being happy started ...’. We also
attach three types of direct modifiers of the predi-
cate in the context – adjectives, determiners, and
negations – to make the reference of the predicate
specific to the context in the hypothesis. For exam-
ple, ‘we’re not happy ...’ becomes ‘the not being
happy started ...’. For cases where the lemma of the
event appears multiple times in the context, we at-
tach the direct object modifier of the event to make
the reference unambiguous in the context. For ex-
ample, to refer to the highlighted predicate in the
context – ‘we cleaned the apartment .... and they
cleaned the washroom ...’ – we use the hypothesis

‘the cleaning the apartment started ...’. We use the
gold dependency trees of each context to obtain
these modifiers of the predicate. We do not con-
sider predicates with AUX and DET POS tags for
our recasting.

For TE3, TB-Dense, and RED, the gold depen-
dency trees are not available, so we focus only on
verb-verb event relations to ensure better grammati-
cality of the hypothesis. To get the POS and lemma
for sentences in TE3, TB-Dense and RED, we pro-
cess and tokenize each sentence using Stanza (Qi
et al., 2020). To get the inflection on each verb, we
use LemmInflect.3

4 Dataset Validation

To assess whether the recast NLI pairs are correct,
we conduct a validation experiment by randomly
sampling 100 NLI pairs from the train split of each
dataset. For each NLI pair, we ask the annotators to
answer the question – How likely is it that the sec-
ond sentence is true if the first sentence is true? We
provide 5 options to choose from – extremely likely,
very likely, even chance, very unlikely, extremely
unlikely.

We recruited 48 annotators from Amazon Me-
chanical Turk to validate the sampled NLI pairs for
each of our 5 recasted datasets. We selected only
those annotators who passed an American native-
speaker test with 90% or above accuracy. Each
item in our validation task listed 10 NLI pairs.

If our recasting produces valid NLI pairs, we
should see that entailed pairs receive higher likeli-
hood judgments than not-entailed pairs, even when
adjusting for the dataset the pair comes from, the
annotator, the pair, and the list of pairs the annotator
saw the pair in. To test this, we fit an ordinal mixed

3Details about LemmInflect can be found at: https://
github.com/bjascob/LemmInflect

effects model to the likelihood responses given by
annotators, with a fixed effect for the source of the
NLI pair as well as random intercepts for anno-
tator, pair, and list. We compare this model to a
model that additionally includes a fixed effect for
the entailment label associated with the pair by our
recasting. We find a reliable positive effect of the
label being entailed (χ2(1) = 227.1, p < 0.001),
indicating our recasting method produces valid NLI
pairs.

5 Experimental Setup

We use our recast datasets to explore how well
different common classes of NLI models capture
temporal reasoning. Specifically, we use three
types of models: (i) neural bag of words (NBOW;
Iyyer et al., 2015) (ii) InferSent (Conneau et al.,
2017), and (iii) RoBERTa (Liu et al., 2019).4 Our
NBOW model represents contexts and hypotheses
as an average of GloVe embeddings (Pennington
et al., 2014). The concatenation of these repre-
sentations is fed to a MLP with one hidden layer.
The InferSent model encodes contexts and hypothe-
ses independently with a BiLSTM and sentence
representations are extracted using max-pooling.
The concatenation of these sentences, their differ-
ence, and their element-wise product (Mou et al.,
2016) are then fed to a MLP. For Roberta, we use a
classification head on top of the pooled output of
roberta-large to predict the labels.5

In our experiments, we train and test these mod-
els on each recast temporal dataset. For each model,
we include a hypothesis-only baseline to evaluate
how much the datasets test NLI as opposed to just
the likely duration and order of events in general.
Additionally, we train each model on Multi-genre
NLI (MNLI, Williams et al., 2018) and test the
model on our datasets to see if the model learns
temporal reasoning from a generic NLI dataset that
does not necessarily focus on temporal reasoning.

6 Results & Discussion

Table 4 shows the accuracy of different models on
our recast temporal datasets. We report the majority
baseline (MAJ) of always predicting the label that
appeared the most in training. We see that the
models trained on MNLI perform poorly on our
recast datasets, even worse than MAJ baseline in

4Code here: https://github.com/sidsvash26/
temporal_nli

5We include implementation details in Appendix A.

https://github.com/bjascob/LemmInflect
https://github.com/bjascob/LemmInflect
https://github.com/sidsvash26/temporal_nli
https://github.com/sidsvash26/temporal_nli
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Model UDS-duration UDS-order TempEval3 TimeBank-Dense RED

Majority 50.00 54.52 53.58 50.50 52.01
MNLI Baseline

NBOW 47.92 53.21 51.31 47.85 51.12
InferSent 48.45 51.81 47.27 48.51 54.02
RoBERTa 50.28 55.01 53.93 50.75 52.01

Hypothesis-Only
NBOW 91.35 54.53 60.02 68.10 62.50
InferSent 90.69 71.96 60.09 68.43 62.50
RoBERTa 90.84 54.52 60.80 75.31 65.18

Context and Hypothesis
NBOW 91.76 54.48 59.31 68.27 62.50
InferSent 90.56 71.45 60.16 68.77 52.01
RoBERTa 92.81 79.64 77.87 70.55 74.78

Table 4: Accuracies on the test set of our recast datasets as predicted by different settings of our models.

many cases. This indicates that the models trained
on MNLI do not learn representations well enough
to infer temporal reasoning in our datasets.

The hypothesis-only models provide an inter-
esting limitation of NBOW and InferSent. Both
NBOW and InferSent hypothesis-only models are
as good as, or even better, than the normal models
across all datasets. RoBERTa, however, improves
when given the context, across all datasets, with
TimeBank-Dense as the exception. This suggests
that RoBERTa embeddings are better able to cap-
ture the semantics of the context than NBOW and
InferSent. In fact, NBOW and InferSent may just
predict the label based on information about lexical
entities in the hypothesis.

Context in duration All three hypothesis-only
models achieve high accuracy on the NLI dataset
based on UDS-Duration. Even RoBERTa seems
to fail to capture anything extra from the context.
To analyze this anomaly, we create a hypothesis-
template based majority baseline inferred from the
UDS-Duration train data and find that it achieves
an 80.2% accuracy on the test set. This indicates
that the data is skewed for each template, which
might be caused by the skewed minutes duration la-
bel in UDS-T (roughly 28% of the UDS-T train set
contains minutes as the true duration label). This
template based majority prediction is noteworthy
as the models pretrained on MNLI fail to infer the
correct labels even when the labels are skewed per
template. The neural models see a 10% gain in
accuracy over the template-sensitive majority, in-
dicating that the models are learning the range of
durations for different entities. Another possible

reason that the context does not help much for du-
ration is that events often have a modal distribution
for a duration label, similar to the explanation for
the recast NER data in Poliak et al. (2018)

7 Conclusion

To better capture temporal reasoning inference ca-
pabilities, we create a million NLI pairs recast from
existing corpora in the literature that focus on two
aspects of temporal reasoning – temporal duration
and temporal order. We test existing models trained
on MNLI on our datasets and find that a generic
NLI model is not able to capture temporal reason-
ing. We show that training on our datasets can
improve the performance of models in capturing
temporal reasoning, and some aspects of tempo-
ral reasoning, specifically how long an event lasts,
might be learned from lexical entities alone. We
hope that our recast datasets push the research com-
munity to further explore how learning temporal
reasoning could benefit other tasks.
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A Model Implementation Details

For all of the experiments using Glove embeddings,
we use 300-length dimensional embeddings. The
MLP for the NBOW model has one hidden layer of
100 dimensions. The output from the hidden layer
is fed to a logistic regression softmax classifier.

In InferSent, the encoders have one layer in each
direction and we use Glove embeddings to initially
represent the tokens. Sentence representations of
length 2048 are extracted by max-pooling. The
MLP has one hidden layer of 512 dimensions. We
optimize the model using SGD. We set the initial
learning rate to 0.1 and decay rate to 0.99 and we
train over 20 epochs.

For Roberta, we use the transformers (Wolf
et al., 2019) library from HuggingFace and use their
RobertaForSequenceClassification
class to implement our model. We use a mini-batch
size of 16 trained over 2 GPUs with an Adam
optimizer using 122 warmup steps and an initial
learning rate of 2e-5 and a 0.1 weight decay. For
UDS-T recast datasets we run the Roberta models
for 2 epochs. For TE3, TBD, and RED we run the
model for 10 epochs.

The MNLI dataset has three labels: neutral, con-
tradiction, and entailment. For the MNLI Base-
line models, we train the models to predict these
three labels, but when we evaluate these models
on our recast datasets, we follow common prac-
tice (Belinkov et al., 2019) by converting neutral
and contradiction to the not-entailed label during
test time.


