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Abstract

Syntax has been shown useful for various NLP
tasks, while existing work mostly encodes sin-
gleton syntactic tree using one hierarchical
neural network. In this paper, we investigate a
simple and effective method, Knowledge Dis-
tillation, to integrate heterogeneous structure
knowledge into a unified sequential LSTM en-
coder. Experimental results on four typical
syntax-dependent tasks show that our method
outperforms tree encoders by effectively in-
tegrating rich heterogeneous structure syntax,
meanwhile reducing error propagation, and
also outperforms ensemble methods, in terms
of both the efficiency and accuracy.

1 Introduction

Integrating syntactic information into neural net-
works has received increasing attention in natu-
ral language processing (NLP), which has been
used for a wide range of end tasks, such as senti-
ment analysis (SA) (Nguyen and Shirai, 2015; Teng
and Zhang, 2017; Looks et al., 2017; Zhang and
Zhang, 2019), neural machine translation (NMT)
(Cho et al., 2014; Garmash and Monz, 2015; Gū
et al., 2018), language modeling (Yazdani and Hen-
derson, 2015; Zhang et al., 2016; Zhou et al., 2017),
semantic role labeling (SRL) (Marcheggiani and
Titov, 2017; Strubell et al., 2018; Fei et al., 2020c),
natural language inference (NLI) (Tai et al., 2015a;
Liu et al., 2018) and text classification (Chen et al.,
2015; Zhang et al., 2018b). Despite the usefulness
of structure knowledge, most existing models use
only a single syntactic tree, such as a constituency
or a dependency tree.

Constituent and dependency representation for
syntactic structure share underlying linguistic and
computational characteristics, while differ also in
various aspects. For example, the former focuses
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Figure 1: An example illustrating the mutual benefit of
constituency and dependency tree structures. (1) refers
to the constituency tree structure, (2) indicates the se-
mantic role labels, (3) refers to the example sentence,
(4) represents the dependency tree structure.

on revealing the continuity of phrases, while the
latter is more effective in representing the depen-
dencies among elements. By integrating the two
representations from heterogeneous trees, the mu-
tual benefit has been explored for joint parsing
tasks (Collins, 1997; Charniak and Johnson, 2005;
Farkas et al., 2011; Yoshikawa et al., 2017; Zhou
and Zhao, 2019). Intuitively, complementary ad-
vantages from heterogeneous trees can facilitate a
range of NLP tasks, especially syntax-dependent
ones such as SRL and NLI. Taking the sentence of
Figure 1 as example, where an example is shown
from SRL1 task. In this case, the dependency links
can locate the relations between arguments and
predicates more efficiently, while the constituency
structure can aggregate the phrasal spans for argu-
ments, and guide the global path to the predicate.
Integrating the features of two structures can bet-
ter guide the model to focus on the most suitable
phrasal granularity (as circled by the dotted box),
and also ensure the route consistency between the
semantic objective pairs.

In this paper, we investigate the Knowledge Dis-
tillation (KD) method, which has been shown to be

1We consider the span-based SRL, which aims to annotate
the phrasal span of all semantic arguments.
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effective for knowledge ensembling (Hinton et al.,
2015; Kim and Rush, 2016; Furlanello et al., 2018),
for heterogeneous structure integration. Specifi-
cally, we employ a sequential LSTM as the stu-
dent for distilling heterogeneous syntactic struc-
tures from various teacher tree encoders, such as
GCN (Kipf and Welling, 2017) and TreeLSTM
(Tai et al., 2015a). We consider output distillation,
syntactic feature injection and semantic learning.
In addition, we introduce an alternative structure
injection strategy to enhance the ability of hetero-
geneous syntactic representations within the shared
sequential model. The distilled structure-aware stu-
dent model can make inference using sequential
word inputs alone, reducing the error accumulation
from external parsing tree annotations.

We conduct extensive experiments on a wide
range of syntax-dependent tasks, including seman-
tic role labeling, relation classification, natural lan-
guage inference and sentiment classification. Re-
sults show that the distilled student outperforms
tree encoders, verifying the advantage of inte-
grating heterogeneous structures. The proposed
method also outperforms existing ensemble meth-
ods and strong baseline systems, demonstrating its
high effectiveness on structure information integra-
tion.

2 Related Work

2.1 Syntactic Structures for Text Modeling

Previous work shows that integrating syntactic
structure knowledge can improve the performance
of NLP tasks (Socher et al., 2013; Cho et al., 2014;
Nguyen and Shirai, 2015; Looks et al., 2017; Liu
et al., 2018; Zhang and Zhang, 2019; Fei et al.,
2020b). Generally, these methods consider in-
jecting either standalone constituency tree or de-
pendency tree by tree encoders such as TreeL-
STM (Socher et al., 2013; Tai et al., 2015a) or
GCN (Kipf and Welling, 2017). Based on the as-
sumption that the dependency and constituency
representation can be disentangled and coexist in
one shared model, existing efforts are paid for
joint constituent and dependency parsing, veri-
fying the mutual benefit of these heterogeneous
structures (Collins, 1997; Charniak, 2000; Char-
niak and Johnson, 2005; Farkas et al., 2011; Ren
et al., 2013; Yoshikawa et al., 2017; Strzyz et al.,
2019; Kato and Matsubara, 2019; Zhou and Zhao,
2019). However, little attention is paid for facili-
tating the syntax-dependent tasks via integrating

Sequential
Word Input

Dependency Tree Input Constituency Tree Input

GCNGCN
Tree

LSTM
Tree

LSTM

Gold One-hot
Dependency Teachers Constituency TeachersStudent

②

③ ④

①

①,②: Output Distill
③,④: Feature Distill

Figure 2: Overall framework of the proposed model.

heterogeneous syntactic trees. Although the inte-
gration from heterogeneous trees can be achieved
via widely employed approaches, such as ensem-
ble learning (Wolpert, 1992; Ju et al., 2019) and
multi-task training (Liu et al., 2016; Chen et al.,
2018; Fei et al., 2020a), they usually suffer from
low-efficiency and high computational complexity.

2.2 Knowledge Distillation

Our work is related to knowledge distillation tech-
niques. It has been shown that KD is very effective
and scalable for knowledge ensembling (Hinton
et al., 2015; Furlanello et al., 2018), and exist-
ing methods are divided into two categories: 1)
output distillation, which makes a teacher model
output logits as a student model training objective
(Kim and Rush, 2016; Vyas and Carpuat, 2019;
Clark et al., 2019), 2) feature distillation, which
allows a student to learn from a teacher’s inter-
mediate feature representations (Zagoruyko and
Komodakis, 2017; Sun et al., 2019). In this pa-
per, we enhance the distillation of heterogeneous
structures via both output and feature distillations
by employing a sequential LSTM as the student.
Our work is also closely related to Kuncoro et al.,
(2019), who distill syntactic structure knowledge
to a student LSTM model. The difference lies in
that they focus on transferring tree knowledge from
syntax-aware language model for achieving scal-
able unsupervised syntax induction, while we aim
at integrating heterogeneous syntax for improving
downstream tasks.

3 Method

As shown in Figure 2, the overall architecture con-
sists of a sequential LSTM (Hochreiter and Schmid-
huber, 1997) student, and several tree teachers for
dependency and constituency structures.
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3.1 Tree Encoder Teachers
Different tree models can encode the same tree
structure, resulting in different heterogeneous tree
representations. Following previous work (Tai
et al., 2015b; Marcheggiani and Titov, 2017; Zhang
and Zhang, 2019), we consider encoding depen-
dency trees by Child-Sum TreeLSTM and con-
stituency trees by N-ary TreeLSTM. We also
employ GCN to encode dependency and con-
stituency structures separately. We employ a bidi-
rectional tree encoder to fully capture the struc-
tural information interaction. Formally, we de-
note X = {x1, · · · , xn} as an input sentence,
Xdep = {xdep

1 , · · · , xdep
n } as the dependency tree

and Xcon = {xcon
1 , · · · , xcon

n } as the constituency
tree.

Encoding dependency structure. We first use
the standard Child-Sum TreeLSTM to encode the
dependency structure, where each node j in the tree
takes as input the embedding vector xj correspond-
ing to the head word. The conventional bottom-up
fashion is:

hj =
∑

k∈C(j)

hk

ij = σ(W (i)x
dep
j + U (i)hj + b(i))

fjk = σ(W (f)x
dep
j + U (f)hk + b(f))

oj = σ(W (o)x
dep
j + U (o)hj + b(o))

uj = tanh(W (u)x
dep
j + U (u)hj + b(u))

cj = ij � uj +
∑

k∈C(j)

fjk � ck

hj = oj � tanh(cj)

(1)

where W , U and b are parameters. C(j) refers
to the set of child nodes of j. hj , ij , oj and cj
are the hidden state, input gate, output gate and
memory cell of the node j, respectively. fjk is a
forget gate for each child k of j. σ(·) is an activa-
tion function and � is element-wise multiplication.
Similarly, the top-down TreeLSTM has the same
transition equations as the bottom-up TreeLSTM,
except that the direction and the number of depen-
dent nodes are different. We concatenate the tree
representations of two directions for each node:
hbij = [h↑j ;h

↓
j ].

Compared with TreeLSTM, GCN is more com-
putationally efficient in performing the tree prop-
agation for each node in parallel with O(1) com-
plexity. Considering the constructed dependency

graph G = (V, E), where V are sets of nodes, and
E are sets of bidirectional edges between heads and
dependents, respectively. GCN can be viewed as a
hierarchical node encoder, representing the node j
at the l-th layer encoded as follows:

gli = σ(W l
i h

l
i + bli) (2)

hlj = ReLU(
∑

i∈N (i)x
l
i � gli) (3)

where N (i) are neighbors of the node j. ReLU is
a non-linear activation function. For dependency
encoding by TreeLSTM or GCN, we make use of
all the node representations, Rdep = [r1, · · · , rn],
within the whole tree structure for next distillation.

Encoding constituency structure. We employ
N-ary TreeLSTM to encode constituent tree:

ij = σ(W (i)xcon
j +

N∑
q=1

U (i)
q hjq + b(i))

fjk = σ(W (f)xcon
j +

N∑
q=1

U
(f)
kq hjq + b(f))

oj = σ(W (o)xcon
j +

N∑
q=1

U (o)
q hjq + b(o))

uj = tanh(W (u)xcon
j +

N∑
q=1

U (u)
q hjq + b(u))

cj = ij � uj +

N∑
q=1

fjq � cjq

hj = oj � tanh(cj)
(4)

where q is the index of the branch of j. Slightly dif-
ferent from Child-Sum TreeLSTM, the separate pa-
rameter matrices for each child k allow the model
to learn more fine-grained and order-sensitive chil-
dren information. We also concatenate two direc-
tions from both bottom-up and top-down of each
node as the final representation.

Similarly, GCN is also used to encode the con-
stituent graph G = (V, E) via Eq. (2) and (3). Note
that there are both words and constituent labels in
the node set V . For constituency encoding by both
TreeLSTM and GCN, we take the representations
of terminal nodes in the structure as the correspond-
ing word representations Rcon = [r1, · · · , rn].

3.2 Heterogeneous Structure Distillation
Sequential models have been proven effective on
encoding syntactic tree information (Shen et al.,
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2018; Kuncoro et al., 2019). We set the goal of KD
as simultaneously distilling heterogeneous struc-
tures from tree encoder teachers into a LSTM stu-
dent model.

We denote Γ(dep) = {γ(TreeLSTM), γ(GCN)}
as the dependency teachers, and Γ(con) =
{γ(TreeLSTM), γ(GCN)} as the constituency teachers,
and Γ(all)=Γ(dep)

⋃
Γ(con) as the overall teach-

ers. The objective of the student model can be
decomposed into three terms: an output distillation
target, a semantic target, and a syntactic target.

Output distillation. The output logits serve as
soft target providing richer supervision than the
hard target of one-hot gold label for the training
(Hinton et al., 2015). Given an input sentence X
with the gold label Y (one-hot), the output logits
of teachers are P t

Γ(all), and the output logits of the
student is P s. The output distilling can be denoted
as:

Loutput = H([αY + (1− α)P t
Γ(all)], P

s) (5)

whereH(, ) refers to the cross-entropy. α is a cou-
pling factor, which increases from 0 to 1 in training,
namely teacher annealing (Clark et al., 2019).

Syntactic tree feature distillation. In order to
capture rich syntactic tree features, we consider al-
lowing the student to directly learn from the teach-
ers’ feature hidden representation. Specifically,
we denote the hidden representation of the student
LSTM as Rs = [r1, · · · , rn], and we expect Rs

to be able to predict the output of Rdep or Rcon

from syntax-aware teachers. Thus the target is to
optimize the following regression loss:

L(A)
dep =

1

2

n∑
j=1

||f tΓ(dep)(r
dep
j )−fs(rs

j)||2 (6)

L(A)
con =

1

2

n∑
j=1

||f tΓ(con)(r
con
j )−fs(rs

j)||2 (7)

L(A)
syn = ηL(A)

dep + (1− η)L(A)
con (8)

where η ∈ [0, 1] is a factor for coordinating the
dependency and constituency structure encoding,
f tΓ(dep)(), f tΓ(con)(), fs() are the feedforward lay-
ers, respectively, for calculating the corresponding
score vectors, and j is the word index.

Semantic learning. We randomly mask a target
input word Qj and let LSTM predict the word
based on its hidden representation of prior words.

In consequence, we pose the following language
modeling objective:

Lsem =

M∑
j=1

H(Qj , P
s
j |X[1,··· ,j−1]) (9)

by which LSTM can additionally improve the abil-
ity of semantic learning.

3.3 Enhanced Structure Injection
We consider further enhancing the trees injection,
by encouraging the student to mimic the depen-
dency and constituency tree induction of teachers.

Dependency injection. We force the student to
predict the distributions of dependency arcs and
labels based on the hidden representations and the
representations of teachers.

L(B)
dep =

n∑
j

n∑
i

H(P t
Γ(dep)(rj |xi), P

s(rj |xi))

+
n∑
j

n∑
i

L∑
k

H(P t
Γ(dep)(lk|rj , xi), P

s(lk|rj , xi))

(10)
where P t

Γ(dep)(rj |xi) is the arc probability of the
parent node rj for xi in the dependency teacher,
and P t

Γ(dep)(lk|rj , xi) is the probability of the label
lk for the arc (rj , xi) in the teacher.

Constituency injection. Similarly, to enhance
constituency injection, we mimic the distribution
of each span (i, j) with the label l in teachers. Fol-
lowing Zhou et al. (2019), we adopt a feedforward
layer as the span scorer:

Scr(t) =
∑

(i,j)∈t

∑
k

f(i, j, l) (11)

We use the CYK algorithm (Cocke, 1970; Younger,
1975; Kasami, 1965) to search the highest score
tree T ∗ in teachers, and all possible trees T in the
student. Then we optimize the following hinge loss
between the structures in the student and teachers:

L(B)
con = max(0,max

t∈T
(Scr(t)+∆(t, T ∗))−Scr(T ∗))

(12)
where ∆ is the hamming distance. The above syn-
tax loss in Eq. (10) and (12) can substitute the
ones in Eq. (6) and (7), respectively. The overall
objective of the structure injection is:

L(B)
syn = ηL(B)

dep + (1− η)L(B)
con (13)
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Regularization. Based on the independent as-
sumption, the syntax feature distillations target
learning diversified private representations for het-
erogeneous structures as much as possible. In prac-
tice, there should be a latent shared structure in the
parameter space, while the separate distillations
will squeeze such shared feature, weakening the
expression of the learnt representations. To avoid
this, we additionally impose a regularization on Eq.
(6), (7), (10) and (12):

Lreg =
ζ

2
||Θ||2 , (14)

where Θ is the overall parameter in the student.

3.4 Training

Algorithm 1 gives the overall structure distillation
process. At early training stage (line 2-19), seman-
tic learning (Eq. 9) and output distillation (Eq. 5)
are first executed by each teacher. As we have
multiple teachers for one student on each task, for
syntactic tree structure distillation, we sequentially
distill one teacher at one time. We take turn with a
turning gap G2 processing the dependency or con-
stituency injection from a tree teacher (line 13-17),
to keep the training stable. After a certain number
of training iterations G1, we optimize the overall
loss (line 20):

Lall = Loutput + λ1Lsyn + λ2Lsem (15)

where λ1 and λ2 are coefficients, which regulate
the corresponding objectives. Lsyn can be either
L(A)

syn (Eq. 8) or L(B)
syn (Eq. 13), that is, the syntax

sources are simultaneously from two tree encoders
(dependency and constituency) at one time. Dur-
ing inference, the well-trained student can make
prediction alone with only word sequential input.

4 Experiments

4.1 Experimental Setups

Hyperparameters. We use a 3-layer BiLSTM
as our student, and a 2-layer architecture for all
tree teachers. The default word embeddings are
initialized randomly, and its dimension is set as 300.
The hidden size is set to 350 in the student LSTM,
and 300 in the teacher models, respectively. We
adopt the Adam optimizer with an initial learning
rate of 1e-5. We use the mini-batch of 32 within
total 10k (T ) iterations with early stopping, and
apply 0.4 dropout ratio for all embeddings. We set

Algorithm 1: Distill heterogeneous trees.

Input: Training set: (X,Xdep,Xcon, Y );
Total iteration T ; Syntax turn gaps
G1, G2; Syntax flag F=Ture.

Output: Student model.
1 while t < T do
2 if t ≤ G1 then
3 if t%G2 == 0 then
4 F ←!F ;
5 end
6 P s ← Student(X) ;
7 opt Lsem in Eq. (9) ;
8 for γ(model) ∈ Γ(all) do
9 P t

Γ(dep), r
dep
j ← γ(model)(Xdep);

10 P t
Γ(con), r

con
j ← γ(model)(Xcon);

11 P t
Γ(all) = P t

Γ(dep)

⋃
P t

Γ(con) ;
12 opt Loutput in Eq. (5) ;
13 if F then
14 opt Ldep in Eq. (6) or (10) ;

// dependency learning
15 else
16 opt Lcon in Eq. (7) or (12) ;

// constituency learning
17 end
18 end
19 else
20 opt Lall in Eq. (15) ;
21 end
22 end

the coefficients λ1, λ2, ζ and η as 0.6, 0.2, 0.2 and
0.5, respectively. The training iteration thresholds
G1 and G2 are set as 300 and 128, respectively.
These values achieve the best performance in the
development experiments.

Baselines systems. We compare the follow-
ing baselines. 1) Sequential encoders: LSTM,
attention-based LSTM (ATTLSTM) and Trans-
former (Vaswani et al., 2017), sentence-state LSTM
(S-LSTM) (Zhang et al., 2018a); 2) Tree encoders
introduced in §2; 3) Ensemble models: ensem-
bling learning (EnSem) (Wolpert, 1992; Ju et al.,
2019), multi-task method (MTL) (Liu et al., 2016;
Chen et al., 2018), adversarial training (AdvT) (Liu
et al., 2017) and tree communication model (TCM)
(Zhang and Zhang, 2019). For EnSem, we only
concatenate the output representations of tree en-
codes. For MTL, we use an underlying shared
LSTM for parameter sharing for tree encodes. For
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AdvT, we adopt the shared-private architecture (Liu
et al., 2017) based on MTL. Following Zhang et
al. (2019), for TCM, we initialize GCN for TreeL-
STM, to encode dependency and constituency trees
respectively, and finally concatenate the output rep-
resentations. Note that all the models in Tree En-
semble group take total four Tree teachers as in
our distillation teachers’ meta-encoders. 4) Other
baselines: ESIM (Chen et al., 2017), local-global
pattern based self-attention networks (LG-SANs)
(Xu et al., 2019) and BERT.

Tasks and evaluation. The experiments are con-
ducted on four representative syntax-dependent
tasks: 1) Rel, relation classification on Semeval10
(Hendrickx et al., 2010); 2) NLI, sentence pair
classification on the Stanford NLI (Bowman et al.,
2015); 3) SST, binary sentiment classification
task on the Stanford Sentiment Treebank (Socher
et al., 2013), 4) SRL, semantic role labeling on the
CoNLL2012 OntoNotes (Pradhan et al., 2013). For
NLI, we make element-wise production, subtrac-
tion, addition and concatenation of two separate
sentence representations as a whole. We mainly
adopt F1 score to evaluate the performance of dif-
ferent models. The data splitting follows previous
work.

Trees annotations and resources. The
OntoNotes data offers the annotations of the
dependency and constituency structure. For
the rest datasets, we parse sentences via the
state-of-the-art BiAffine dependency parser (Dozat
and Manning, 2017), and the Self-Attentive
constituency parser (Kitaev and Klein, 2018). The
parsers are trained on PTB2. The dependency
parser has a 93.4% LAS, and the constituency
parser has 92.6% F1 score. Besides, we evaluate
different contextualized word representations, such
as ELMo3 and BERT4.

4.2 Main Results

Experimental results of different models are shown
in Table 1, where several observations can be found.
First, tree models encoded with syntactic knowl-
edge can facilitate syntax-dependent tasks, outper-
forming sequential models by a substantial mar-
gin. Second, different tree encoders integrated with

2https://catalog.ldc.upenn.edu/
LDC99T42.

3https://allennlp.org/elmo
4https://github.com/google-research/

bert

Rel NLI SST SRL
• Sequential Encoder

LSTM 80.5 79.6 82.3 76.6
ATTLSTM 82.3 81.5 84.2 78.2
Transformer 84.7 84.2 85.0 80.5
S-LSTM 85.0 84.8 86.2 82.0
• Standalone Tree Model

TreeLSTM+dep. 85.2 86.0 86.4 82.5
GCN+dep. 85.9 85.8 86.1 83.3
TreeLSTM+con. 85.0 86.8 87.6 82.2
GCN+con. 84.8 86.3 86.8 81.8
Avg. 85.3 86.2 86.5 82.4
• Tree Ensemble

EnSem 85.5 87.0 86.0 81.4
MTL 84.9 88.3 87.2 83.7
AdvT 86.4 87.6 85.2 82.1
TCM 85.7 88.8 88.4 83.0
Avg. 85.9 88.1 86.7 82.3
• Distilled Student
Best 89.2∗ 90.8∗ 91.6∗ 85.5∗

• Others
ESIM - 88.9 - -
LG-SANs 85.6 86.5 87.3 81.2
BERT 91.3 92.1 94.4 86.0

Table 1: Main results on various end tasks. ∗ indicates
p ≤0.05.

varying syntactic tree structures can make different
contributions to the tasks. For example, GCN with
dependency structure gives the best result for Rel,
while TreeLSTM with constituency tree achieves
the best performance for SST. Third, when inte-
grating heterogeneous tree structures by tree en-
semble methods, a competitive performance can
be obtained, showing the importance of integrat-
ing heterogeneous tree information. Finally, our
distilled student model significantly outperforms
all the baseline systems5, demonstrating its high
effectiveness on the integration of heterogeneous
structure information.

Ablation results. We ablate each part of our dis-
tilling method in Table 2. First, we find that the
enhanced structure injection strategy (L(B)

syn) can
help to achieve the best results for all the tasks,
compared with the latent syntax feature mimic
(L(A)

syn). By ablating each distilling objective, we
learn that the syntax tree distillation (Lsyn) is
the kernel of our knowledge distillation for these

5Note that a direct comparison with BERT is unfair, be-
cause a large number of pre-trained parameters can bring
overwhelming improvement.

https://catalog.ldc.upenn.edu/LDC99T42
https://catalog.ldc.upenn.edu/LDC99T42
https://allennlp.org/elmo
https://github.com/google-research/bert
https://github.com/google-research/bert
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Rel NLI SST SRL
• Syntax Injection Strategy

+L(A)
syn 88.6 90.2 91.0 85.0

+L(B)
syn 89.2 90.8 91.6 85.5

• Distilling Objective (with L(B)
syn)

w/o Lsem 87.9 89.2 89.7 84.8
w/o Lsyn 86.8 88.7 88.9 83.7
w/o Lreg 88.1 89.3 89.9 84.7
w/o Tea.Anl. 88.2 89.1 90.4 84.5
• Contextualized Semantics (with L(B)

syn)
+ELMo 90.6 91.6 92.4 85.1
+BERT 92.2 93.0 95.1 86.8

Table 2: Ablation results on distilled student. ‘Tea.Anl.’
refers to teacher annealing. In ‘Semantics’, we re-
place semantic learning Lsem with pre-trained contex-
tualized word representations.

Constituency Dependency
TreeLSTM+dep. 28.31 73.92
GCN+dep. 19.11 76.32
TreeLSTM+con. 68.65 30.27
GCN+con. 66.30 23.85
Student-Full 62.61 70.34

w/o Lreg 53.20 64.08

Table 3: Probing the upper-bound of constituent and
dependent syntactic structure.

syntax-dependent tasks, compared with semantic
feature learning (Lsem). Besides, both the intro-
duced teacher annealing factor α and regularization
Lreg can benefit the task performance. Finally, we
explore recent contextualized word representations,
including ELMo (Peters et al., 2018) and BERT
(Devlin et al., 2019). Surprisingly, our distilled
student model receives a substantial performance
improvements in all tasks. However, when remov-
ing the proposed syntax distillation from BERT,
the performance drops, as shown in Table 1 (the
vanilla BERT).

4.3 Heterogeneous Tree Structure
Upper-bound of heterogeneous structures.
We explore to what extent the distilled student can
manage to capture heterogeneous tree structure
information. Following previous work (Conneau
et al., 2018), we consider employing two syntactic
probing tasks, including 1) Constituent labeling,
which assigns a non-terminal label for text spans
within the phrase-structure (e.g., Verb, Noun, etc.),
and 2) Dependency labeling, which predicts the

Rel NLI SST SRL

0.1

0.5

0.9

Figure 3: Heterogeneous syntax distribution. The pre-
dominance of dependency syntax is above 0.5, other-
wise for constituency.
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Figure 4: Results under varying ratio of train set.

relationship (edge) between two tokens (e.g.,
subject-object etc.). We take the last-layer output
representation as the probing objective. We
compare the student model with four teacher
tree encoders, separately, based on the SRL task.
As shown in Table 3, the student LSTM gives
slightly lower score than one of the best tree
models (i.e., GCN+dep. for dependency labeling,
TreeLSTM+con. for constituency labeling),
showing the effectiveness on capturing syntax.
Besides, we can find that the regularization Lreg
plays a key role in improving the expression
capability of the learnt representation.

Distributions of heterogeneous syntax in differ-
ent tasks. We also compare the distributions of
dependency and constituency structures in differ-
ent tasks after fine-tuning. Technically, based on
each example in the test set, the performance drops
when the student LSTM is trained only under either
standalone dependency or constituency injection
(TreeLSTM or GCN), respectively, by controlling
η=0 or 1. Intuitively, the more the results drop, the
more the model benefits from the corresponding
syntax. For each task, we collect the sensitivity val-
ues and linearly normalize them into [0,1] for all
examples, and make statistics. As plotted in Figure
3, the distributions of dependency and constituency
syntax vary among tasks, verifying that different
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tasks depend on distinct types of structural knowl-
edge, while integrating them altogether can give
the best effects. For example, TreeDepth, de-
pendency structures support Rel and SRL, while
NLI and SST benefit from constituency the most.

4.4 Robustness Analysis

Generalization ability to training data. Figure
4 shows the performance of different models on
varying ratio of the full training dataset. We can
find that the performance decreases with the reduc-
tion of the training data for all methods, while our
distilled student achieves better results, compared
with most of the baselines. The underlying reasons
are two-fold. First, the heterogeneous syntactic
features can provide strong representations for sup-
porting better predictions. Second, the distilled
student takes only sequential inputs, avoiding the
noise from parsed inputs to some extent.

Also we see that TreeLSTM/GCN+dep. can
counteract the data reduction (≤40%) on Rel and
SRL tasks, showning that they rely more on depen-
dency structures, while NLI and SST depend on
constituency structures. In addition, the student
starts underperforming than the best one on the
small data (≤40%). Without explicit tree annota-
tions, the contribution of heterogeneous syntax can
be deteriorated. But it still remains robust on short-
age of training data than most of the baselines, due
to its noise resistant.

Reducing error accumulation of tree annota-
tion. We investigate the effects on reducing
noises from tree annotation. We compare the
performance under different sources. Table 4
shows the results on SRL. With only word inputs,
our model still outperforms the baselines which
take the gold syntax annotation. This partially
shows that without parsed tree annotation, the stu-
dent model can avoid noise and error propagation.
When we add gold annotation as additional signal,
the performance can be further improved.

Efficiency study. As shown in Figure 5, the stu-
dent model has fewer parameters, while keeping
faster decoding speed, compared with other ensem-
ble models. Our sequential model is about 3 times
smaller than AdvT, but nearly 4 times faster than
the tree ensemble methods. Such observation coin-
cides with previous studies (Kim and Rush, 2016;
Sun et al., 2019; Clark et al., 2019).

System Auto-Syn Gold-Syn w/o Syn
TreeLSTM+dep. 80.6 82.5 -
GCN+dep. 81.1 83.3 -
TreeLSTM+con. 79.6 82.2 -
GCN+con. 79.8 81.8 -
EnSem 80.5 81.4 -
MTL 81.2 83.7 -
AdvT 81.0 82.1 -
TCM 82.4 83.0 -
Student-Full - 86.2† 85.5

Table 4: Performance of different systems with
automatically-parsed/gold syntax, and without syntax
annotations. † indicates that we concatenate additional
gold syntactic label with other input features.

5

25

45

Tr
ee

L
ST

M
+d

ep
.

Tr
ee

L
ST

M
+c

on
st

.

E
nS

em

M
T

L

A
dv

T

T
C

M

G
C

N
+d

ep
.

G
C

N
+c

on
st

.

St
ud

en
t

0

200

Pa
ra

m
et

er
(m

)
Sp

ee
d

(s
en

t/s
ec

)

Figure 5: Comparisons on parameter scale and decod-
ing speed.

4.5 Visualization on Heterogeneous Structure

The enhanced structure injection objectives (Eq.
(10) and (12)) enables the student LSTM to unsu-
pervisedly induce tree structures at the test stage.
To understand how the distilled model promote the
mutual learning of heterogeneous structures, we
empirically visualize the induced trees based on a
test example of SRL. As shown in Figure 6, the
discovered dependency structures accurately match
the gold tree, and the constituents are highly cor-
related with the gold one. Besides, the edges that
indicate the two elements are augmented by the
learning of each other, which in return enhance
the recognition of the spans of elements (yellow
dotted boxes), respectively. For example, the con-
stituent and dependent paths (green lines) linking
two minimal target spans, the Focus Today program
and by Wang Shilin, are enhanced and echoed with
each other, via the core predicate. This reveals that
our method can offer a deeper latent interaction
between heterogeneous tree structures.
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Coming up  is  the Focus Today program hosted by Wang Shilin
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(a) gold structures

(b) discovered structures

nsubj

Figure 6: A SRL case where hosted is predicate, the Fo-
cus Today program is A0, by Wang Shilin is A1. Bold
green lines indicates the edges with higher scores.

5 Conclusion

We investigated knowledge distillation on hetero-
geneous tree structures integration for facilitating
NLP tasks, distilling syntactic knowledge into a
sequential input encoder, in both output and feature
level distillations. Results on four representative
syntax-dependent tasks showed that the distilled
student outperformed all standalone tree models, as
well as the commonly used ensemble methods, in-
dicating the effectiveness of the proposed method.
Further analysis demonstrated that our method en-
joys high robustness and efficiency.

Acknowledgments

This work is supported by the National Natural
Science Foundation of China (No. 61772378,
No. 61702121), the National Key Research
and Development Program of China (No.
2017YFC1200500), the Research Foundation of
Ministry of Education of China (No. 18JZD015),
the Major Projects of the National Social Science
Foundation of China (No. 11&ZD189), the Key
Project of State Language Commission of China
(No. ZDI135-112) and Guangdong Basic and
Applied Basic Research Foundation of China (No.
2020A151501705).

References
Samuel R. Bowman, Gabor Angeli, Christopher Potts,

and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of EMNLP, pages 632–642.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. In Proceedings of NAACL.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and MaxEnt discriminative
reranking. In Proceedings of ACL, pages 173–180.

Junkun Chen, Xipeng Qiu, Pengfei Liu, and Xuanjing
Huang. 2018. Meta multi-task learning for sequence
modeling. In Proceedings of AAAI, pages 5070–
5077.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced LSTM for
natural language inference. In Proceedings of ACL,
pages 1657–1668.

Xinchi Chen, Xipeng Qiu, Chenxi Zhu, Shiyu Wu, and
Xuanjing Huang. 2015. Sentence modeling with
gated recursive neural network. In Proceedings of
EMNLP, pages 793–798.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bah-
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