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Abstract

In this paper, we report on the shared task
on metaphor identification on VU Amster-
dam Metaphor Corpus and on a subset of the
TOEFL Native Language Identification Cor-
pus. The shared task was conducted as apart of
the ACL 2020 Workshop on Processing Figu-
rative Language.

1 Introduction

Metaphor use in everyday language is a way to re-
late our physical and familiar social experiences to
a multitude of other subjects and contexts (Lakoff
and Johnson, 2008); it is a fundamental way to
structure our understanding of the world even
without our conscious realization of its presence
as we speak and write. It highlights the unknown
using the known, explains the complex using the
simple, and helps us to emphasize the relevant as-
pects of meaning resulting in effective communi-
cation.

Metaphor has been studied in the context
of political communication, marketing, mental
health, teaching, assessment of English profi-
ciency, among others (Beigman Klebanov et al.,
2018; Gutierrez et al., 2017; Littlemore et al.,
2013; Thibodeau and Boroditsky, 2011; Kaviani
and Hamedi, 2011; Kathpalia and Carmel, 2011;
Landau et al., 2009; Beigman Klebanov et al.,
2008; Zaltman and Zaltman, 2008; Littlemore and
Low, 2006; Cameron, 2003; Lakoff, 2010; Billow
et al., 1997; Bosman, 1987); see chapter 7 in Veale
et al. (2016) for a recent review.

We report on the second shared task on auto-
matic metaphor detection, following up on the first
shared task held in 2018 (Leong et al., 2018). We
present the shared task and provide a brief descrip-
tion of each of the participating systems, a com-
parative evaluation of the systems, and our obser-
vations about trends in designs and performance
of the systems that participated in the shared task.

2 Related Work

Over the last decade, automated detection of
metaphor has become an popular topic, which
manifests itself in both a variety of approaches
and in an increasing variety of data to which the
methods are applied. In terms of methods, ap-
proaches based on feature-engineering in a su-
pervised machine learning paradigm explored fea-
tures based on concreteness and imageability, se-
mantic classification using WordNet, FrameNet,
VerbNet, SUMO ontology, property norms, and
distributional semantic models, syntactic depen-
dency patterns, sensorial and vision-based fea-
tures (Bulat et al., 2017; Köper and im Walde,
2017; Gutierrez et al., 2016; Shutova et al., 2016;
Beigman Klebanov et al., 2016; Tekiroglu et al.,
2015; Tsvetkov et al., 2014; Beigman Klebanov
et al., 2014; Dunn, 2013; Neuman et al., 2013;
Mohler et al., 2013; Hovy et al., 2013; Tsvetkov
et al., 2013; Turney et al., 2011; Shutova et al.,
2010; Gedigian et al., 2006); see Shutova et al.
(2017) and Veale et al. (2016) for reviews of super-
vised as well as semi-supervised and unsupervised
approaches. Recently, deep learning methods have
been explored for token-level metaphor detection
(Mao et al., 2019; Dankers et al., 2019; Gao et al.,
2018; Wu et al., 2018; Rei et al., 2017; Gutierrez
et al., 2017; Do Dinh and Gurevych, 2016).

In terms of data, researchers used specially con-
structed or selected sets, such as adjective noun
pairs (Gutierrez et al., 2016; Tsvetkov et al., 2014),
WordNet synsets and glosses (Mohammad et al.,
2016), annotated lexical items (from a range of
word classes) in sentences sampled from cor-
pora (Özbal et al., 2016; Jang et al., 2015; Hovy
et al., 2013; Birke and Sarkar, 2006), all the way
to annotation of all words in running text for
metaphoricity (Beigman Klebanov et al., 2018;
Steen et al., 2010); Veale et al. (2016) review var-
ious annotated datasets.
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3 Task Description

The goal of this shared task is to detect, at the
word level, all content word metaphors in a given
text. We are using two datasets – VUA and
TOEFL, to be described shortly. There are two
tracks for each dataset, for a total of four tracks:
VUA All POS, VUA Verbs, TOEFL All POS,
and TOEFL Verbs. The AllPOS track is con-
cerned with the detection of all content words,
i.e., nouns, verbs, adverbs and adjectives that are
labeled as metaphorical while the Verbs track is
concerned only with verbs that are metaphorical.
We excluded all forms of be, do, and have for both
tracks. For each dataset, each participating indi-
vidual or team can elect to compete in the All POS
track, Verbs track, or both. The competition is or-
ganized into two phases: training and testing.

3.1 Datasets

3.1.1 VUA corpus
We use the VU Amsterdam Metaphor Corpus
(VUA) (Steen et al., 2010). The dataset consists
of 117 fragments sampled across four genres from
the British National Corpus: Academic, News,
Conversation, and Fiction. The data is annotated
using the MIPVU procedure with a strong inter-
annotator reliability of κ > 0.8 (Steen et al., 2010).
The VUA dataset and annotations is the same as
the one used in the first shared task on metaphor
detection (Leong et al., 2018), where the reader is
referred for further details.

3.1.2 TOEFL corpus
This data labeled for metaphor was sampled from
the publicly available ETS Corpus of Non-Native
Written English1 and was first introduced by
(Beigman Klebanov et al., 2018). The annotated
data comprises essay responses to eight persua-
sive/argumentative prompts, for three native lan-
guages of the writer (Japanese, Italian, Arabic),
and for two proficiency levels – medium and high.
The data was annotated using the protocol in
Beigman Klebanov and Flor (2013), that empha-
sized argumentation-relevant metaphors:

“Argumentation-relevant metaphors are,
briefly, those that help the author ad-
vance her argument. For example, if
you are arguing against some action be-
cause it would drain resources, drain

1https://catalog.ldc.upenn.edu/LDC2014T06

is a metaphor that helps you advance
your argument, because it presents the
expenditure in a very negative way,
suggesting that resources would disap-
pear very quickly and without control.”
Beigman Klebanov and Flor (2013)

Average inter-annotator agreement was
κ = 0.56-0.62, for multiple passes of the anno-
tation (see (Beigman Klebanov et al., 2018) for
more details). We use the data partition from
Beigman Klebanov et al. (2018), with 180 essays
as training data and 60 essays as testing data.

Tables 1 and 2 show some descriptive charac-
teristics of the data: the number of texts, sen-
tences, tokens, and class distribution information
for Verbs and AllPOS tracks for the two datasets.

Datasets VUA TOEFL
Train Test Train Test

#texts 90 27 180 60
#sents 12,123 4,081 2,741 968

Table 1: Number of texts and sentences for both VUA
and TOEFL datasets.

To facilitate the use of the datasets and evalu-
ation scripts beyond this shared task in future re-
search, the complete set of task instructions and
scripts are published on Github2. We also pro-
vide a set of features used to construct one of
the baseline classification models for prediction of
metaphor/non-metaphor classes at the word level,
and instructions on how to replicate that baseline.

3.2 Training phase

In this first phase, data is released for train-
ing and/or development of metaphor detection
models. Participants can elect to perform cross-
validation on the training data, or partition the
training data further to have a held-out set for
preliminary evaluations, and/or set apart a subset
of the data for development/tuning of hyper-
parameters. However the training data is used, the
goal is to have N final systems (or versions of a
system) ready for evaluation when the test data is
released.

2https://github.com/EducationalTestingService/metaphor
/tree/master/NAACL-FLP-shared-task,
https://github.com/EducationalTestingService/metaphor/
/tree/master/TOEFL-release
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Datasets VUA TOEFL
Verbs All POS Verbs All POS

Train Test Train Test Train Test Train Test
#tokens 17,240 5,873 72,611 22,196 7,016 2,301 26,737 9,014
%M 29% − 18% − 13% − 7% −

Table 2: Number of tokens and percentage of metaphors breakdown for VUA and TOEFL datasets.

3.3 Testing phase

In this phase, instances for evaluation are re-
leased.3 Each participating system generated
predictions for the test instances, for up to N
models.4 Predictions are submitted to CodaLab5

and evaluated automatically against the gold-
standard labels. Submissions were anonymized.
The only statistics displayed were the highest
score of all systems per day. The total allowable
number of system submissions per day was
limited to 5 per team per track. The metric used
for evaluation is the F1 score (least frequent
class/label, which is “metaphor”) with Precision
and Recall also available via the detailed results
link in CodaLab.

The shared task started on January 12, 2020
when the training data was made available to reg-
istered participants. On February 14, 2020, the
testing data was released. Submissions were ac-
cepted until April 17, 2020. Table 3 shows the
submission statistics for systems with a system pa-
per. Generally, there were more participants in the
VUA tracks than in TOEFL tracks, and in All POS
tracks than in Verbs tracks. In total, 13 system pa-
pers were submitted describing methods for gen-
erating metaphor/non-metaphor predictions.

#teams #submissions
VUA-AllPOS 13 210
VUA-Verbs 11 167
TOEFL-AllPOS 9 247
TOEFL-Verbs 9 181

Table 3: Participation statistics for all tracks.

3In principle, participants could have access to the test
data by independently obtaining the VUA corpus. The shared
task was based on a presumption of fair play by participants.

4We set N=12.
5https://competitions.codalab.org/competitions/22188

4 Systems

We first describe the baseline systems. Next, we
briefly describe the general approach taken by ev-
ery team. Interested readers can refer to the teams’
papers for more details.

4.1 Baseline Classifiers

We make available to shared task participants a
number of features from prior published work on
metaphor detection, including unigram features,
features based on WordNet, VerbNet, and those
derived from a distributional semantic model,
POS-based, concreteness and difference in con-
creteness, as well as topic models.

We adopted three informed baselines from prior
work. As Baseline 1: UL + WordNet + CCDB,
we use the best system from Beigman Kle-
banov et al. (2016). The features are: lem-
matized unigrams, generalized WordNet seman-
tic classes, and difference in concreteness rat-
ings between verbs/adjectives and nouns (UL +
WN + CCDB).6 Baseline 2: bot.zen is one
of the top-ranked systems in the first metaphor
shared task in 2018 by Stemle and Onysko (2018)
that uses a bi-directional recursive neural network
architecture with long-term short-term memory
(LSTM BiRNN) and implements a flat sequence-
to-sequence neural network with one hidden layer
using TensorFlow and Keras in Python. The sys-
tem uses fastText word embeddings from different
corpora, including learner corpus and BNC data.
Finally, Baseline 3: BERT is constructed by fine-
tuning the BERT model (Devlin et al., 2018) in a
standard token classification task: After obtaining
the contextualized embeddings of a sentence, we
apply a linear layer followed by softmax on each
token to predict whether it is metaphorical or not.
Chen et al. (2020) gives more details about the ar-
chitecture of this baseline. For Verbs tracks, we
tune the system on All POS data and test on Verbs,

6Baseline 1 is “all-16” in Beigman Klebanov et al. (2018)
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as this produced better results during preliminary
experimentation than training on Verbs only.

4.2 System Descriptions

illiniMet: RoBERTa embedding + Linguistic
features + Ensemble Gong et al. (2020) used
RoBERTa to obtain a contextualized embedding of
a word and concatenate it with features extracted
from linguistic resources (e.g. WordNet, VerbNet)
as well as other features (e.g. POS, topicality,
concreteness) previously used in the first shared
task (Leong et al., 2018) before feeding them into
a fully-connected Feedforward network to gener-
ate predictions. During inference, an ensemble of
three independently trained models using different
train/development splits is proposed to yield a fi-
nal prediction based on majority vote. Using just
RoBERTa without linguistic features in an ensem-
ble also generates competitive performance.

DeepMet: Global and local text information
+ Transformer stacks Su et al. (2020) proposed
a reading comprehension paradigm for metaphor
detection, where the system seeks to understand
the metaphoricity role of each word token in a
shorter sequence within a given sentence. Features
belonging to five different categories are provided
as inputs to the network i.e. global text context,
local text context, query word, general POS, fine-
grained POS. The features are then mapped onto
embeddings before going into Transformer stacks
and ensemble for inference. An ablation experi-
ment was also performed with the observation that
fine-grained POS and global text features are the
most helpful for detecting metaphors.

umd bilstm: Bi-LSTM + Embeddings + Un-
igram Lemmas + Spell Correction Kuo and
Carpuat (2020) explored the effectiveness of ad-
ditional features by augmenting the basic contex-
tual metaphor detection system developed by Gao
et al. (2018) with one-hot unigram lemma features
in addition to GloVe and ELMo embeddings. The
authors also experimented with a spell-corrected
version of TOEFL data and found it further im-
proves the performance of the Bi-LSTM system.

atr2112: Residual Bi-LSTM + Embeddings +
CRF + POS + WN Rivera et al. (2020) proposed
a deep architecture that takes as inputs ELMo em-
beddings that represent words and lemmas, along
with POS labels and WordNet synsets. The inputs
are processed by a residual Bi-LSTM, then by a
number of additional layers, with a final CRF se-

quence labeling step to generate predictions.

Zenith: Character embeddings + Similar-
ity Networks + Bi-LSTM + Transformer Ku-
mar and Sharma (2020) added lexical and ortho-
graphic information via character embeddings in
addition to GloVe and ELMo embeddings for an
enriched input representation. The authors also
constructed a similarity metric between the literal
and contextual representations of a word as an-
other input component. A Bi-LSTM network and
Transformer network are trained independently
and combined in an ensemble. Eventually, adding
both character-based information and similarity
network are the most helpful, as evidenced by re-
sults obtained using cross-validation on the train-
ing datasets.

rowanhm: Static and contextual embeddings
+ concreteness + Multi-layer Perceptron Maud-
slay et al. (2020) created a system that combines
the concreteness of a word, its static embedding
and its contextual embedding before providing
them as inputs into a deep Multi-layer Percep-
tron network which predicts word metaphoricity.
Specifically, the concreteness value of a word is
formulated as a linear interpolation between two
reference vectors (concrete and abstract) which
were randomly initialized and learned from data.

iiegn: LSTM BiRNN + metadata; com-
bine TOEFL and VUA data Stemle and Onysko
(2020) used an LSTM BiRNN classifier to study
the relationship between the metadata in the
TOEFL corpus (proficiency, L1 of the author, and
the prompt to which the essay is responding) and
classifier performance. The system is an exten-
sion of the authors’ system for the 2018 shared
task (Stemle and Onysko, 2018) that served as
one of the baseline in the current shared task (see
section 4.1). Analyzing the training data, the au-
thors observed that essays written by more profi-
cient users had significantly more metaphors, and
that essays responding to some of the prompts had
significantly more metaphors than other prompts;
however, using proficiency and prompt metadata
explicitly in the classifier did not improve perfor-
mance. The authors also experimented with com-
bining VUA and TOEFL data.

Duke Data Science: BERT, XNET language
models + POS tags as features for a Bi-LSTM
classifier Liu et al. (2020) use pre-trained BERT
and XLNet language models to create contex-
tualized embeddings, which are combined with
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POS tags to generate features for a Bi-LSTM for
token-level metaphor classification. For the test-
ing phase, the authros used an ensemble strategy,
training four copies of the Bi-LSTM with different
initializations and averaging their predictions. To
increase the likelihood of prediction of a metaphor
label, a token is declared a metaphor if: (1) its pre-
dicted probability is higher than the threshold, or
(2) if its probability is three orders of magnitude
higher than the median predicted probability for
that word in the evaluation set.

chasingkangaroos: RNN + BiLSTM + Atten-
tion + Ensemble Brooks and Youssef (2020) use
an ensemble of RNN models with Bi-LSTMs and
bidirectional attention mechanisms. Each word
was represented by an 11-gram and appeared at the
center of the 11-gram; each word in the 11-gram
was represented by a 1,324 dimensional word em-
bedding (concatenation of ELMo and GloVe em-
beddings). The authors experimented with ensem-
bles of models that implement somewhat differ-
ent architecture (in terms of attention) and models
trained on all POS and on a specific POS.

Go Figure!: BERT + multi-task + spell cor-
rection + idioms + domain adaptation Chen
et al. (2020) baseline system (also one of the
shared task baselines, see section 4.1) uses BERT
– after obtaining the contextualized embeddings
of a sentence, a linear layer is applied followed
by softmax on each token to predict whether it is
metaphorical or not. The authors spell-correct the
TOEFL data, which improves performance. Chen
et al. (2020) present two multi-task settings: In the
first, metaphor detection on out-of-domain data
is treated as an auxiliary task; in the second, id-
iom detection on in-domain data is the auxiliary
task. Performance on TOEFL is helped by the first
multi-task setting; performance on VUA is helped
by the second.

UoB team: Bi-LSTM + GloVe embeddings
+ concreteness Alnafesah et al. (2020) explore
ways of using concreteness information in a neural
metaphor detection context. GloVe embeddings
are used as features to an SVM classifier to learn
concreteness values, training it using human labels
of concreteness. Then, for metaphor detection, ev-
ery input word is represented as a 304-dimensional
vector – 300 dimensions are GloVe pre-trained
embeddings, plus probabilities for the four con-
creteness classes. These representations of words
are given as input to a Bi-LSTM which outputs a

sequence of labels. Results suggest that explicit
concreteness information helps improve metaphor
detection, relative to a baseline that uses GloVe
embeddings only.

zhengchang: ALBERT + BiLSTM Li et al.
(2020) use a sequence labeling model based on
ALBERT-LSTM-Softmax. Embeddings produced
by BERT serve as input to BiLSTM, as well as
to the final softmax layer. The authors report on
experiments with inputs to BERT (single-sentence
vs pairs; variants using BERT tokenization), spell-
correction of the TOEFL data, and CRF vs soft-
max at the classification layer.

PolyU-LLT: Sensorimotor and embodiment
features + embeddings + n-grams + logis-
tic regression classifier Wan et al. (2020) use
sensorimotor and embodiment features. They
use the Lancaster Sensorimotor norms (Lynott
et al., 2019) that include measures of sensorimotor
strength for about 40K English words across six
perceptual modalities (e.g., touch, hearing, smell),
and five action effectors (mouth/throat, hand/arm,
etc), and embodiment norms from Sidhu et al.
(2014). The authors also use word, lemma, and
POS n-grams; word2vec and GloVe word embed-
dings, as well as cosine distance measurements
using the embeddings. The different features are
combined using logistic regression and other clas-
sifiers.

5 Results and Discussion

Table 4 present the results for All POS and Verbs
tracks for VUA data. Table 5 present the results
for All POS and Verbs tracks for TOEFL data.

5.1 Trends in system design
The clearest trend in the 2020 submissions is the
use of deep learning architectures based on BERT
(Devlin et al., 2018) – more than half of the partic-
ipating systems used BERT or its variant. The use-
fulness of BERT for metaphor detection has been
shown by Mao et al. (2019), where a BERT-based
system posted F1 = 0.717 on VUA AllPOS, hence
our use of a BERT-based system as Baseline 3.

Beyond explorations of neural architectures, we
also observe usage of new lexical, grammati-
cal, and morphological information, such as fine-
grained POS, spell-corrected variants of words
(for TOEFL data), sub-word level information
(e.g., character embeddings), idioms, sensorimo-
tor and embodiment-related information.



23

Rank Team P R F1
All POS

1 DeepMet .756 .783 .769
2 Go Figure! .721 .748 .734
3 illiniMet .746 .715 .730
4 rowanhm .727 .709 .718
5 Baseline 3: BERT .712 .725 .718
6 zhengchang .696 .729 .712
7 chasingkangaroos .702 .704 .703
8 Duke Data Science .662 .699 .680
9 Zenith .630 .716 .670

10 umd bilstm .733 .601 .660
11 atr2112 .599 .672 .633
12 PolyU-LLT .556 .660 .603
13 iiegn .601 .591 .596
14 UoB team .653 .548 .596
15 Baseline 2: bot.zen .612 .575 .593
16 Baseline 1: UL + .510 .696 .589

+ WN + CCDB
Verbs

1 DeepMet .789 .819 .804
2 Go Figure! .732 .823 .775
3 illiniMet .761 .781 .771
4 Baseline 3: BERT .725 .789 .756
5 zhengchang .706 .811 .755
6 rowanhm .734 .779 .755
7 Duke Data Science .712 .749 .730
8 Zenith .667 .775 .717
9 umd bilstm .597 .806 .686

10 atr2112 .652 .718 .683
11 PolyU-LLT .608 .703 .652
12 iiegn .587 .691 .635
13 Baseline 2: bot.zen .605 .666 .634
14 Baseline 1: UL + .527 .698 .600

+ WN + CCDB

Table 4: VUA Dataset: Performance and ranking of
the best system per team and baselines, for All POS
track (top panel) and for Verbs track (bottom panel).

5.2 Performance wrt 2018 shared task

Since the same VUA dataset was used in 2020
shared task as in the 2018 shared task, we can di-
rectly compare the performance of the best sys-
tems to observe the extent of the improvement.
The best system in 2018 performed at F1 = 0.651;
the best performance in 2020 is more than 10
points better – F1 = 0.769. Indeed, the 2018 best
performing system would have earned the rank of
11 in the 2020 All POS track, suggesting that the
field has generally moved to more effective mod-
els than those proposed for the 2018 competitions.

The best result posted for the 2020 shared task
is on par with state-of-art for VUA All POS task:
Dankers et al. (2019) reported F1 = 0.769 for
a multi-task learning setting utilizing emotion-
related information. The best results obtained by
participants of the 2020 shared task for TOEFL
are state-of-the-art, improving upon Baseline 1,
which is the best published result for this dataset

Rank Team P R F1
All POS

1 DeepMet .695 .735 .715
2 zhengchang .755 .666 .707
3 illiniMet .709 .697 .703
4 Go Figure! .669 .717 .692
5 Duke Data Science .688 .651 .669
6 Baseline 3: BERT .701 .563 .624
7 Zenith .607 .634 .620
8 umd bilstm .629 .593 .611
9 iiegn .596 .579 .587

10 PolyU-LLT .523 .602 .560
11 Baseline 2: bot.zen .590 .517 .551
12 Baseline 1: UL + .488 .576 .528

+ WN + CCDB
Verbs

1 DeepMet .733 .766 .749
2 zhengchang .735 .720 .728
3 illiniMet .731 .707 .719
4 Go Figure! .747 .661 .702
5 Duke Data Science .687 .707 .697
6 Baseline 3: BERT .624 .694 .657
7 Zenith .669 .638 .653
8 umd bilstm .668 .562 .611
9 PolyU-LLT .584 .609 .596

10 Baseline 2: bot.zen .566 .595 .580
11 Baseline 1: UL + .504 .641 .564

+ WN + CCDB
12 iiegn .622 .487 .546

Table 5: TOEFL Dataset: Performance and ranking
of the best system per team and baselines, for All POS
track (top panel) and for Verbs track (bottom panel).

(Beigman Klebanov et al., 2018).

5.3 Performance across genres: VUA

Table 6 shows performance by genre for the VUA
data All POS track. The patterns are highly consis-
tent across systems, and replicate those observed
for the 2018 shared task – Academic and News
genres are substantially easier to handle than Fic-
tion and Conversation. The gap between the best
and worst performance across genres for the same
system remains wide – between 11.4 F1 points and
24.3 F1 points. Somewhat encouragingly, the gap
is narrower for the better performing systems – the
top 6 systems show the smallest gaps between best
and worst genres (11.4-14.0).

5.4 Performance on VUA vs TOEFL data

Table 7 shows performance and ranks of the best
systems for teams that participated in both VUA
and TOEFL AllPOS tracks, along with baselines.
Overall, the relative performance rankings are
consistent – F1 scores are correlated at r = .92
and team ranks are correlated at r = 0.95 across
the two datasets. All teams posted better per-
formance on the VUA data than on the TOEFL
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Team All Acad. Conv. Fiction News Best to
VUA Worst

atr2112 .633 .716 (1) .510 (4) .558 (3) .641 (2) .206
chasingkangaroos .703 .761 (1) .599 (4) .651 (3) .714 (2) .162
PolyU-LLT .603 .719 (1) .482 (3) .476 (4) .634 (2) .243
DeepMet .769 .810 (1) .681 (4) .718 (3) .790 (2) .129
UoB team .596 .686 (1) .485 (4) .511 (3) .582 (2) .201
iiegn .596 .669 (1) .521 (3) .500 (4) .626 (2) .169
umd bilstm .660 .724 (1) .537 (4) .606 (3) .670 (2) .187
illiniMet .730 .768 (1) .654 (4) .688 (3) .743 (2) .114
rowanhm .718 .760 (1) .631 (4) .678 (3) .730 (2) .129
Zenith .670 .730 (1) .566 (4) .583 (3) .697 (2) .164
Duke Data Science .680 .742 (1) .572 (4) .617 (3) .697 (2) .170
Go Figure! .734 .784 (1) .644 (4) .692 (3) .741 (2) .140
zhengchang .712 .752 (1) .634 (4) .669 (3) .723 (2) .118
Baseline 3: BERT .718 .767 (1) .640 (4) .684 (3) .719 (2) .127
Baseline 2: bot.zen .593 .673 (1) .487 (4) .521 (3) .602 (2) .186
Baseline 1: UL+ .589 .721 (1) .472 (3) .458 (4) .606 (2) .263

+WN+CCDB
Av. rank among genres – 1.00 3.81 3.19 2.00 .169

Table 6: VUA Dataset: Performance (F1-score) of the best systems submitted to All-POS track by genre subsets of
the test data. In parentheses, we show the rank of the given genre within all genres for the system. The last column
shows the overall drop in performance from best genre (ranked 1) to worst (ranked 4). The top three performances
for a given genre are boldfaced.

Team VUA TOEFL Diff.
(rank) (rank)

Baseline 1: UL+ .59 (12) .53 (12) .06
+WN+CCDB

Baseline 2: bot.zen .59 (11) .55 (11) .04
Baseline 3: BERT .72 (4) .62 (6) .09
PolyU-LLT .60 (9) .56 (10) .04
DeepMet .77 (1) .72 (1) .05
iiegn .60 (10) .59 (9) .01
umd bilstm .66 (8) .61 (8) .05
illiniMet .73 (3) .70 (3) .03
Zenith .67 (7) .62 (7) .05
Duke Data Science .68 (6) .67 (5) .01
Go Figure! .73 (2) .69 (4) .04
zhengchang .71 (5) .71 (2) .01

Table 7: VUA vs TOEFL: Performance (F1 scores)
and rankings of participants in both VUA and TOEFL
All POS competitions. Column 4 shows the difference
in F1 performance between VUA and TOEFL data.

data; the difference (see column 4 in Table 7)
averaged 4 F1 points, ranging from just half a
F1 point (zhengchang) to 5 F1 points (DeepMet,
umd bilstm, Zenith). The BERT baseline posted
a relatively large difference of 9 F1 points; this
could be because BNC data is more similar to the
data on which BERT has been pre-trained than
TOEFL data. We note, however, that participat-
ing systems that used BERT showed a smaller per-
formance gap between VUA and TOEFL data; in
zhengchang the gap is all but eliminated. This
suggests that a BERT-based system with param-
eters optimized for performance on TOEFL data

can close this gap.
Considering TOEFL data as an additional

genre, along with the four genres represented in
VUA, we observe that it is generally harder than
Academic and News, and is commensurate with
Fiction in terms of performance, for the three sys-
tems with best VUA All POS performance (Deep-
Met: 0.72 both, Go Figure!: 0.69 both, illiniMet:
0.69 for VUA Fiction, .70 for TOEFL); a caveat
to this observation is that the difference between
VUA and TOEFL is not only in genre but in the
metaphor annotation guidelines as well.

5.5 Performance by proficiency: TOEFL

Table 8 shows performance for All POS track
on the TOEFL data by the writer’s proficiency
level – high or medium. We note that the qual-
ity of the human annotations does not appear to
differ substantially by proficiency: The average
inter-annotator agreement for the high proficiency
essays was κ = 0.619, while it was κ = 0.613
for the medium proficiency essays. We observe
that generally systems tend to perform better on
the higher proficiency essays, although two of
the 12 systems posted better performance on the
medium proficiency data. However, even though
the medium proficiency essays might have defi-
ciencies in grammar, spelling, coherence and other
properties of the essay that could interfere with
metaphor detection, we generally observe rela-



25

tively small differences in performance by pro-
ficiency – up to 3.5 F1 points, with a few ex-
ceptions (zhengchang, Go Figure!). Interestingly,
automatic correction of spelling errors does not
seem to guarantee a smaller gap in performance
(see Chen et al. (2020), Go Figure!).

Team All High Med. Diff.
PolyU-LLT .560 .567 (1) .552 (2) .015
DeepMet .715 .724 (1) .706 (2) .018
iiegn .587 .592 (1) .583 (2) .009
umd bilstm .611 .620 (1) .601 (2) .019
illiniMet .703 .717 (1) .690 (2) .027
Zenith .620 .637 (1) .604 (2) .033
Duke Data .669 .660 (2) .677 (1) .017

Science
Go Figure! .692 .713 (1) .671 (2) .042
zhengchang .707 .741 (1) .674 (2) .067
Baseline 3: BERT .624 .636 (1) .612 (2) .024
Baseline 2: bot.zen .551 .535 (2) .567 (1) .032
Baseline 1: UL+ .528 .533 (1) .524 (2) .009
WordNet+CCDB

Av. rank – 1.16 1.83 .03

Table 8: TOEFL Dataset: Performance (F1-score) of
the best systems submitted to All-POS track by profi-
ciency level (high, medium) subsets of the test data. In
parentheses, we show the rank of the given proficiency
level within all levels for the system. The last column
shows the overall drop in performance from best pro-
ficiency level (ranked 1) to worst (ranked 4). The top
three performances for a given genre are boldfaced.

5.6 Part of Speech

Table 9 shows the performance of the systems sub-
mitted to the All POS tracks for VUA and TOEFL
data broken down by part of speech (Verbs, Nouns,
Adjectives, Adverbs). As can be observed both
from the All POS vs Verbs tracks (Tables 4 and 5)
and from Table 9, performance on Verbs is gener-
ally better than on All POS.7

For VUA data, all but one systems perform best
on Verbs, followed by Adjectives and Nouns, with
the worst performance generally observed for Ad-
verbs. These results replicate the findings from
the 2018 shared task and follow the proportions
of metaphors in the respective parts of speech, led
by Verbs (30%), Adjectives (18%), Nouns (13%),
Adverbs (8%). The average gap between best and
worst POS performance has also stayed similar –
11 F1 points (it was 9% in 2018).

7Performance on Verbs track and performance on Verbs as
part of All POS track might differ, since for Verbs track, par-
ticipants could train their system on verbs-only data, whereas
we took submissions to All POS track and analyzed by POS
for Table 9.

For the TOEFL data, the situation is quite dif-
ferent. Adjectives lead the scoreboard for all but
3 systems, with Adverbs and Verbs coming next,
while Nouns proved to be the most challenging
category for all participating systems. Further-
more, the gap between best and worst POS perfor-
mance is large – 17 F1 points on average, ranging
between 11 and 22 points. The best performance
on Nouns is only F1 = 0.641; it would have ranked
10th out of 12 on Adjectives. The proportions
of metaphorically used Verbs (13%), Adjectives
(8%), Nouns (4%), and Adverbs (3%) (based on
training data) perhaps offer some explanation of
the difficulty with nouns, since nominal metaphors
seem to be quite rare. Stemle and Onysko (2020)
observed that metaphors occur more frequently
in responses to some essay prompts that to oth-
ers among the 8 prompts covered in the TOEFL
dataset; moreover, for some prompts, a metaphor
is suggested in the prompt itself and occurs fre-
quently in responses (e.g. whether broad knowl-
edge is better than specialized knowledge). It is
possible that prompt-based patterns interact with
POS patterns in ways that affect relative ease or
difficulty of POS for metaphor identification.
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Team All-POS Verbs Adjectives Nouns Adverbs Best to Worst
VUA Dataset

atr2112 .633 .683 (1) .602 (2) .595 (3) .560 (4) .12
chasingkangaroos .703 .737 (1) .678 (2) .678 (2) .648 (4) .09
PolyU-LLT .603 .625 (1) .595 (2) .581 (3) .552 (4) .07
DeepMet .769 .800 (1) .733 (3) .749 (2) .732 (4) .07
UoB team .596 .626 (1) .587 (2) .569 (3) .506 (4) .12
iiegn .596 .635 (1) .581 (2) .558 (3) .513 (4) .12
umd bilstm .660 .700 (1) .642 (2) .630 (3) .514 (4) .19
illiniMet .730 .770 (1) .693 (3) .705 (2) .633 (4) .14
rowanhm .718 .753 (1) .660 (3) .706 (2) .644 (4) .11
Zenith .670 .715 (1) .621 (3) .637 (2) .612 (4) .10
Duke Data Science .680 .724 (1) .614 (4) .654 (2) .625 (3) .11
Go Figure! .734 .775 (1) .683 (3) .708 (2) .681 (4) .09
zhengchang .712 .755 (1) .655 (4) .684 (2) .659 (3) .10
Baseline 3: BERT .718 .756 (1) .672 (3) .695 (2) .672 (3) .08
Baseline 2: bot.zen .593 .637 (1) .564 (2) .553 (3) .513 (4) .12
Baseline 1: UL + .589 .616 (1) .557 (3) .564 (2) .542 (4) .07

WN + CCDB
Av. rank among POS – 1.00 2.69 2.38 3.81 .11

TOEFL Dataset
PolyU-LLT .560 .587 (2) .630 (1) .462 (4) .517 (3) .17
DeepMet .715 .749 (3) .757 (2) .610 (4) .800 (1) .19
iiegn .587 .617 (3) .667 (1) .465 (4) .632 (2) .20
umd bilstm .611 .652 (2) .693 (1) .478 (4) .627 (3) .22
illiniMet .703 .718 (3) .770 (2) .609 (4) .786 (1) .18
Zenith .620 .650 (2) .703 (1) .505 (4) .600 (3) .20
Duke Data Science .669 .697 (3) .725 (2) .555 (4) .741 (1) .19
Go Figure! .692 .697 (2) .749 (1) .641 (4) .691 (3) .11
zhengchang .707 .728 (3) .759 (1) .620 (4) .731 (2) .14
Baseline 3: BERT .624 .644 (2) .689 (1) .541 (4) .583 (3) .15
Baseline 2: bot.zen .551 .565 (2) .611 (1) .485 (4) .490 (3) .13
Baseline 1: UL + .528 .543 (2) .618 (1) .415 (4) .531 (3) .20

WN + CCDB
Av. rank among POS – 2.42 1.25 4.00 2.33 .17

Table 9: VUA and TOEFL Datasets by POS: Performance (F1-score) of the best systems submitted to All-POS
track by POS subsets of the test data. In parentheses, we show the rank of the given POS within all POS for the
system. The last column shows the overall drop in performance from best POS (ranked 1) to worst (ranked 4).
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