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Abstract

Understanding tone in Twitter posts will be in-
creasingly important as more and more com-
munication moves online. One of the most dif-
ficult, yet important tones to detect is sarcasm.
In the past, LSTM and transformer architec-
ture models have been used to tackle this prob-
lem. We attempt to expand upon this research,
implementing LSTM, GRU, and transformer
models, and exploring new methods to clas-
sify sarcasm in Twitter posts. Among these,
the most successful were transformer models,
most notably BERT. While we attempted a few
other models described in this paper, our most
successful model was an ensemble of trans-
former models including BERT, RoBERTa,
XLNet, RoBERTa-large, and ALBERT. This
research was performed in conjunction with
the sarcasm detection shared task section in
the Second Workshop on Figurative Language
Processing, co-located with ACL 2020.

1 Introduction

Sarcasm detection is an important step towards
complete natural language comprehension since
a sarcastic phrase typically expresses a sentiment
contradictory to its literal meaning. Humans usu-
ally detect sarcasm with contextual clues, espe-
cially intonation, which is not available in text-
based social media data.

One challenge of sarcasm is the frequent neces-
sity of prior knowledge. Consider an example:

Context: driver tailgating a cyclist gets
instant justice
Response: maybe he tried to save gas like you
do when you tailgate a transport truck

As humans, we can discern this response is sar-
castic since we know a large car behind a small
bike would not improve aerodynamics and hence
gas mileage. This is a Herculean inference for an
algorithm. In other situations, sarcastic inference

relies on knowledge about science, sports, politics,
or movies.

A broader challenge in classifying sarcasm is
that a model trained on one dataset does not neces-
sarily generalize to another one.

Using a Twitter dataset from the Second Work-
shop on Figurative Language Preprocessing, we
tackle this difficult challenge of sarcasm detection
and its specific issues as discussed above.

2 Datasets

The workshop provided two balanced sarcasm
datasets from both Twitter and Reddit with 5,000
and 4,400 observations respectively. The work-
shop collected and labeled the Twitter data using
the hashtags #sarcastic and #sarcasm, and prepro-
cessed the data by replacing URLs and user men-
tions with placeholders. The Reddit dataset is a
subset of that from Khodak et al. (2017). Both
datasets consist of a sarcasm label, response, and
conversation context. Both the test datasets con-
tained 1800 observations.

Unfortunately, there were notable limitations in
the Twitter data. We removed 300 observations
that were duplicates (further discussed in Prepro-
cessing). Nuances in twitter data such as acronyms,
hashtags, and emojis needed to be processed. Fur-
thermore, the Twitter dataset had missing hashtags,
affecting the meaning of the response. Some tweets
also contained images in the response, but there
were no images in the data. For example, one tweet
contained “they gave me the most (#beautiful, re-
moved in the dataset) eggs for breakfast” with an
image of chickens, but without the image it would
be hard to determine its label.

There was also a considerable domain shift be-
tween training and test data for the workshop. For
all models, training and validation scores were sig-
nificantly higher than test scores.
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3 Related Works and How We Use Them

A wide variety of models have been created for sar-
casm detection. Our baseline model stems from the
work of Ghosh et al. (2018) about sarcasm analysis
using conversation context. This model involves
one LSTM reading the context and another reading
the response. While Ghosh and Veale (2017) pro-
posed a similar architecture based on bidirectional
LSTMs to detect sarcasm in Twitter, we found that
bidirectional LSTMs performed similarly to uni-
directional LSTMs. We used two different word
embedding architectures, one from a previous pa-
per trained on a separate Twitter data set and one
using CBOW with position-weights, with character
n-grams of length 5, a window of size 5 and 10 neg-
atives (Ghosh et al., 2018; Grave et al., 2018). Sen-
tence embeddings were obtained from averaging
the word embeddings. We experimented with both
word-level and sentence-level attention models, but
we found that attention-based models performed
similarly to those without (Yang et al., 2016).

The GRU architecture seemed to be a promising
alternative option to the LSTM. Exploring tasks
on audio, handwriting, and musical classification,
Greff et al. (2016) discovered that GRUs performed
the same as LSTMs. Their finding across multiple
domains suggested that GRUs would perform simi-
larly to LSTMs in the Twitter domain. Given the
small size of our dataset and the reduced parame-
ter size and complexity in GRUs, we believed this
architecture could generalize better than LSTMs.

We also experimented with transformer models,
which have been very successful for other appli-
cations such as sentiment analysis, question an-
swering, and recently even for sarcasm detection
(Devlin et al., 2019; Peters et al., 2018; Kayalvizhi
et al., 2019; Potamias et al., 2019). We experi-
mented with using pre-trained representations from
BERT as well as RoBERTa, obtained from a bidi-
rectional approach of a masked language model
and ELMo which uses a concatenation of repre-
sentations obtained from a left-to-right and a right-
to-left language model (Peters et al., 2018; Liu
et al., 2019). We applied ensemble learning us-
ing various pretrained transformer models (BERT,
RoBERTa, XLNet, RoBERTa-large, ALBERT with
no fine-tuning on the transformer weights), where
each model has a learned weighted sum for the
hidden layers that is concatenated with hand-made
features, that is then fed into a dense layer for clas-
sification similar to the work of Wang et al. (2015).

4 Methodology

4.1 Preprocessing
For the Twitter dataset, we had to perform pre-
liminary preprocessing. In the data, we removed
several exact duplicates of observations and sev-
eral almost-exact duplicates, where the context or
responses would only have minor differences in
punctuation (e.g. including or excluding a period)
or a few characters. Text in this dataset also had
an issue where a space was always placed on both
sides of an apostrophe (e.g. ”ol’ Pete isn’t happy”
would become ”ol ’ Pete isn ’ t happy”). To fix
this, we created a list of English contractions and
slang terms paired with their expanded form (e.g.
”ol’” with ”old” and ”isn’t” with ”is not”) and then
cleaned all the text using the list. We also removed
all occurrences of ”<URL>” and ”@USER” in
the text. Lastly, we expanded hashtags using the
python package ekphrasis (Baziotis et al., 2017).

For both this cleaned Twitter data and the Red-
dit data, we proceeded with the following prepro-
cessing and feature creation. We lower-cased text,
removed punctuation (including hashtag symbols),
and expanded contractions and slang terms using
our list mentioned above. For additional features,
We created most of the extra features that Ghosh
et al. (2018) used when they were feasible (e.g. did
not require paying for a dataset). These included
binary features encoding whether any word in the
response was entirely capitalized and whether the
response contained quotation marks. We also cre-
ated a ternary feature for whether zero, one, or
multiple exclamation points were used in the re-
sponse. Additionally, we developed features that
were duplicated for both the context and response.
These included a binary feature indicating if any
word in the text had unnecessary repeating letters
as well as a ternary feature for the sentiment of the
context or response (positive, negative, or neutral)
using TextBlob (Loria, 2018). In addition, we had
a binary feature for whether a positive sentiment
emoji was in the text, and similar features for nega-
tive and neutral sentiment emojis based on a table
from Kralj Novak et al. (2015).

We also created a political feature after noticing
that a large number of the sarcastic tweets were
political in nature. More specifically, from a sample
of 200 tweets that we took, we saw that 67.7% of
the political tweets were sarcastic while 31.8% of
the non-political tweets were sarcastic. We created
this feature by conducting a boolean search on the
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Word Train set Extra Set
joy 6.5% 76.9%

wonderful 6.7% 69.7%
voted 67.6% 6.0%
love 30.4% 72.7%

Table 1: Sarcasm frequencies in different corpora

response and context for key words and phrases
that we deemed to be political. These included the
names of famous politicians and words or phrases
associated with relevant political issues such as
”elections”, ”capitalists”, ”planned parenthood”,
or ”sanctuary city”. In order to reduce our false
positive rate for political classification, we were
careful to exclude words that are often political but
could easily be used in a non-political context such
as ”president” (e.g. the president of a basketball
team) or ”immigrant” (e.g. a person referencing
their life story).

After running an XGBoost model with sentence-
level response embeddings and our features, all
seemed to have relatively equal feature impor-
tances. Therefore, we proceeded with including
all of the features above in our final models.

We also thought certain words or certain top-
ics other than politics might be good predictors
of sarcasm. We calculated the frequency of sar-
casm for all k-grams and discovered certain words
(unigrams) appeared almost strictly in sarcastic or
non-sarcastic responses in the Twitter training data.
As a sanity check, we calculated the same word
frequencies for an extra Twitter dataset with over
65,000 responses gathered in the same way as the
training set (Ptáček et al., 2014). Many compar-
isons between frequencies, some displayed in Table
1, proved that the patterns in the training set were
not representative of Twitter posts as a whole.

We also found that the LDA topic models with
the best coherence were not predictive of sarcasm.
Predicting a tweet based on its top three topics with
a SVM or Logistic Regression Classifier yielded
53% training accuracy. Such low accuracy scores
suggested these features would not be likely to
generalize. Thus, we did not use topic models or
frequency-based features in our final models.

4.2 Final Models and Performance
For all of our models, we focused on classifying
the Twitter dataset and left classifying the Reddit
dataset to future works.

For our final baseline model, we used Twit-
ter embeddings (Ghosh et al., 2018), and we em-

ployed a bidirectional LSTM with sentence-level
embeddings for context and a bidirectional LSTM
with word-level embeddings for response. These
LSTMs outputted sequences, which were modi-
fied by the dimension-reducing attention scheme
proposed by Yang et al. (2016). Finally, these
outputs were concatenated with our extra features
and passed into a dense layer. Switching to unidi-
rectional LSTMs, changing the number of LSTM
units, or adding an extra dense layer yielded no im-
provement. Despite our hopes, replacing LSTMs
with GRUs also did not impact training/validation
performance.

As our two datasets have different distributions,
mainly due to differences in text structure, format-
ting, and content, training by combining the two
datasets together reduced our testing performance
on the Twitter data. This was due to some fea-
tures that are characteristic of the Reddit data, but
may not generalize to the Twitter data. In order
to fully leverage both of the given datasets for pre-
dicting sarcasm on the Twitter datasets, we utilized
a weighted binary cross entropy loss, where we
weighed each batch of Reddit data less than our
Twitter data. By doing so, the model picked up on
more universal sarcasm characteristics inherent to
both datasets, while still being tailored primarily to
the Twitter dataset. While we only tested this for
our LSTM based models, this approach could be
generalized to our other models.

We also utilized pre-trained transformer models
to create sentence-level embeddings for classifica-
tion and word-level embeddings to feed into our
LSTM model. For our testing, we chose to not fine-
tune the weights of the transformer models them-
selves, however future works may consider doing
so. Instead, we use a feature-based approach as
suggested in Devlin et al. (2019), where we extract
features from the hidden states of the pre-trained
transformer model for prediction.

Two different approaches were used to incor-
porate context into the transformer inputs. The
first approach was to concatenate the full context
and response sentences into a single input. A po-
tential downside to this method is that the con-
catenated sentences exceeded the transformer’s se-
quence length limit for certain observations, and
we were forced to remove words from the front of
the context until the string was compatible with the
transformer. The second approach was to feed the
full context and responses into the transformer sep-



273

arately and concatenate the outputs. The second ap-
proach has the benefit of allowing for sentences that
are longer than the transformer’s sequence length
limit, allowing for more context to be utilized. We
also create a baseline model trained solely on the
responses. From our validation results (Table 3),
we decided to use the second approach for our final
submissions.

We obtained token representations for each of
the hidden states in the transformer model, which
were then averaged across the whole sentence to ob-
tain a sentence representation for each of the hidden
states. To determine the best way to combine these
hidden representations into a single sentence em-
bedding, we experimented with using a weighted
sum of all layers, a weighted average of the last
four layers, using only the last layer, summing all
of the layers, and concatenating the last four layers.
We obtained the best validation results from using
a weighted sum of all hidden states (Table 2), and
used this for our final model. From here, we con-
catenated our additional features to this embedding
and pass it through two dense layers for prediction.

For our final submission, we applied this method
to five separate pretrained transformer models and
ensembled their results, which boosted our F1-
macro score by a significant margin on the test
set (0.733 for a single model to 0.756). The models
we chose to ensemble were BERT-base-uncased,
RoBERTa-base, XLNet-base-cased, RoBERTa-
large, and ALBERT-base-v2 from the Huggingface
transformers library (Wolf et al., 2019).

We also developed an LSTM on a weighted sum
of the BERT hidden layer outputs. This model was
similar to the baseline LSTM. BERT outputs from
context were passed into one bidirectional LSTM,
and BERT outputs from response were passed into
another; however, these LSTMs outputted final
states instead of sequences. These results were
concatenated with the extra features and passed
into two dense layers. On the test set, this model
had an approximate 2.2% increase in F1-macro
score compared to the other LSTM baseline.

Additionally, we implemented an ensemble
learning approach in the hopes of highlighting
the strengths of the many models that we devel-
oped. We were hopeful after seeing the improve-
ment from the multiple transformers model that
this model could achieve similar success. The as-
sumption was that if we allowed models that were
extremely confident in certain observations or per-

RoBERTa BERT
Method Precision Recall F1 Precision Recall F1
Weighted sum of last
four hidden layers

0.770 0.769 0.768 0.782 0.776 0.776

Sum all layers 0.786 0.767 0.771 0.767 0.750 0.751
Last layer only 0.761 0.760 0.760 0.772 0.767 0.768
Concatenate last four layers 0.773 0.772 0.773 0.769 0.751 0.751
Weighted sum of all layers 0.764 0.774 0.773 0.785 0.776 0.778

Table 2: Macro-averaged validation scores using var-
ious methods of combining the hidden states. Best
scores for each transformer are in bold

RoBERTa BERT
Method Precision Recall F1 Precision Recall F1
Response only 0.757 0.754 0.755 0.752 0.754 0.752
Concatenated context
and response

0.791 0.762 0.765 0.776 0.761 0.762

Separate context
and response

0.764 0.774 0.773 0.785 0.776 0.778

Table 3: Macro-averaged validation scores for our
transformer architecture with varying levels of contexts

formed best on observations with certain charac-
teristics to classify on those observations while
allowing other models to classify observations in
which this was not the case. In order to imple-
ment this, we first trained and validated a multitude
of models on only half of the training data given,
returning classification probabilities on the other
fifty percent of our training data and all of the test
data. These models included the LSTM model and
BERT model embeddings passed through an SVM,
both discussed earlier, in addition to an LDA topic
model, an XGBoost model, and a Gaussian Process
Classifier, all of which seemed to perform decently
on their own (besides LDA) and implement varying
logic to the same classification problem. We chose
a 50/50 split for our first training since we wanted
to supply these initial models with enough train-
ing data to develop accurate classifications while
leaving enough data for our ensemble classifier to
train on. Once obtaining these outputs, we trained a
Logistic Regression model on the prediction prob-
abilities generated by the many models for the re-
maining 50 percent of the training set as well as the
sarcasm features that we had developed. We chose
Logistic Regression because it seemed to overfit
less than polynomial kernel SVM or decision forest,
and there has been research on the benefits of Logis-
tic Regression on accuracy for ensemble learning
(Wang et al., 2015). We then used this Logistic
Regression to predict whether the test data was
sarcastic or not. This model achieved a validation
score of 0.779 and a test score of 0.686, indicating
that the model did not generalize well. This ensem-
ble model also worsened scores of our best models,
which would achieve a higher F1-macro validation
score when trained on the entirety of our training
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dataset. However, the best transformer models and
RNN models would drop from a validation score
of above 0.703 and 0.682 to 0.667 and 0.504 re-
spectively, when trained on half of the data as done
in the ensemble model. Therefore, we believe that
the ensemble model would have achieved better
scores if it were trained on a larger data set than
the one we worked with. However, it appears that
the weighted transformers model above performed
best given our dataset.

As seen in Table 5, all our final models outper-
formed the LSTM with attention (our implemen-
tation of the baseline from Ghosh et al., 2018).
Transformer representations seemed to capture the
most relevant information for sarcasm detection,
and having context tends to improve results.

5 Error Analysis

These results, however, are far below the F1-macro
scores that were achieved in validation, which led
us to believe that our training data may have come
from a different distribution than our test data. In
order to investigate this further, we calculated dis-
tributions of our features for both the train and test
set. We found a few differences between the dis-
tributions indicating that there may be a covariate
shift between the training and test sets. We provide
a few results from this analysis in Table 4. Notably,
we see that there was a difference of .0816 in the
percentage of tweets that were political between
the test set and the training set. We also see far
less observations with quotes or fully capitalized
words in the test set than the training set. While
this may be due to a small dataset and a high vari-
ance in the distribution of tweets, it still provides
us with enough information to believe that there is
a covariate shift between the training and test sets.

As mentioned above, we also saw a large differ-
ence between our validation and test scores. For
example, we achieved a validation F1-macro score
of 0.767 for our LSTM model with attention. How-
ever, this model achieved an F1-macro score of
0.669 on the test set. Additionally, our ensemble
model went from a validation F1-macro score of
0.779 to a test F1-Macro score of 0.686. In con-
junction with the covariate shift, we believe that
our training and test set come from different distri-
butions which would greatly increase our error.

Features Train Test Difference
Contains a Capitalized Word 0.034 0.002 -0.032
Contains a Quote 0.078 .056 -0.022
Positive Emoji in Context 0.192 0.223 0.031
Political 0.397 0.315 -0.082

Table 4: Feature Distribution in Train and Test Sets

Final Models Precision Recall F1-macro
Transformer Ensemble 0.758 0.767 0.756
Solo RoBERTa Transformer 0.733 0.734 0.733
BERT embeddings + LSTM 0.695 0.704 0.692
Ensemble model 0.687 0.689 0.686
LSTM w/ attention 0.669 0.669 0.669

Table 5: Test Scores of Final Models

6 Discussion and Conclusions

This research can hopefully guide future work on
the topic of detecting sarcasm in social media. On
that note, we would like to provide a few sugges-
tions that others may find helpful in tackling the
problem and a few of the findings that resulted in
the largest improvements for our results.

First, utilizing multiple transformers and weight-
ing them by performance seems to perform far bet-
ter than a single transformer approach. Presumably,
this allows the model to contain the information
provided in each of the embeddings as opposed
to a single form of embeddings. Next, we believe
that this task requires a large amount of training
data. We believe the reason the transformers per-
formed so well was that they were pre-trained on
large datasets. The models that we trained from
scratch did not have as much training data, and we
believe that they would have performed better with
more training data. We believe that the weighted
binary cross-entropy loss function to incorporate
both datasets is a potential approach to help with
this, and a future step would be to incorporate this
into our final transformer models. Additionally, as
emojis are an incredibly prevalent form of commu-
nication on social media, as a future step, we would
like to incorporate emojis into the embedding space
of our models. Finally, sarcasm detection is a diffi-
cult task. Even for humans, it is difficult to deter-
mine whether individuals are being sarcastic online.
There are many complex variables that are difficult
to quantify when determining if a short post is sar-
castic. Therefore, capturing this notion of sarcasm
within a model is difficult as well. We hope our
techniques may be improved and expanded upon
to solve other challenging natural language tasks.
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