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Abstract

We propose Seq2Edits, an open-vocabulary
approach to sequence editing for natural lan-
guage processing (NLP) tasks with a high de-
gree of overlap between input and output texts.
In this approach, each sequence-to-sequence
transduction is represented as a sequence of
edit operations, where each operation either
replaces an entire source span with target to-
kens or keeps it unchanged. We evaluate our
method on five NLP tasks (text normalization,
sentence fusion, sentence splitting & rephras-
ing, text simplification, and grammatical er-
ror correction) and report competitive results
across the board. For grammatical error cor-
rection, our method speeds up inference by up
to 5.2x compared to full sequence models be-
cause inference time depends on the number of
edits rather than the number of target tokens.
For text normalization, sentence fusion, and
grammatical error correction, our approach im-
proves explainability by associating each edit
operation with a human-readable tag.

1 Introduction

Neural models that generate a target sequence con-
ditioned on a source sequence were initially pro-
posed for machine translation (MT) (Sutskever
et al., 2014; Kalchbrenner and Blunsom, 2013;
Bahdanau et al., 2015; Vaswani et al., 2017), but
are now used widely as a central component of
a variety of NLP systems (e.g. Tan et al. (2017);
Chollampatt and Ng (2018)). Raffel et al. (2019)
argue that even problems that are traditionally not
viewed from a sequence transduction perspective
can benefit from massive pre-training when framed
as a text-to-text problem. However, for many NLP
tasks such as correcting grammatical errors in a
sentence, the input and output sequence may over-
lap significantly. Employing a full sequence model
in these cases is often wasteful as most tokens are
simply copied over from the input to the output.

Another disadvantage of a full sequence model is
that it does not provide an explanation for why it
proposes a particular target sequence.

In this work, inspired by a recent increased in-
terest in text-editing (Dong et al., 2019; Malmi
et al., 2019; Mallinson et al., 2020; Awasthi et al.,
2019), we propose Seq2Edits, a sequence editing
model which is tailored towards problems that re-
quire only small changes to the input. Rather than
generating the target sentence as a series of tokens,
our model predicts a sequence of edit operations
that, when applied to the source sentence, yields
the target sentence. Each edit operates on a span in
the source sentence and either copies, deletes, or
replaces it with one or more target tokens. Edits are
generated auto-regressively from left to right using
a modified Transformer (Vaswani et al., 2017) ar-
chitecture to facilitate learning of long-range depen-
dencies. We apply our edit operation based model
to five NLP tasks: text normalization, sentence
fusion, sentence splitting & rephrasing, text simpli-
fication, and grammatical error correction (GEC).
Our model is competitive across all of these tasks,
and improves the state-of-the-art on text normaliza-
tion (Sproat and Jaitly, 2016), sentence splitting &
rephrasing (Botha et al., 2018), and the JFLEG test
set (Napoles et al., 2017) for GEC.

Our model is often much faster than a full se-
quence model for these tasks because its runtime
depends on the number of edits rather than the tar-
get sentence length. For instance, we report speed-
ups of >5x on GEC for native English in initial
experiments. If applicable, we also predict a task-
specific edit-type class (“tag”) along with each edit
which explains why that edit was proposed. For ex-
ample in GEC, the correction of a misspelled word
would be labelled with a SPELL (spelling error)
whereas changing a word from say first person to
third person would be associated with a tag such as
SVA (subject-verb agreement error).
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Figure 1: Representing grammatical error correction as a sequence of span-based edit operations. The
implicit start position for a source span is the end position of the previous edit operation. SELF in-
dicates spans that are copied over from the source sentence (x). The probability of the first two edits
is given by: P (After many years ,|x) = P (t1 = SELF|x) · P (p1 = 3|SELF,x) · P (r1 = SELF|SELF, 3,x) ·
P (t2 = PUNCT|SELF, 3,SELF,x) · P (p2 = 3|SELF, 3,SELF,PUNCT,x) · P (r2 = ,|SELF, 3,SELF,PUNCT, 3,x).

2 Edit-based Sequence Transduction

2.1 Representation

A vanilla sequence-to-sequence (seq2seq) model
generates a plain target sequence y = yJ1 =
y1, y2, . . . , yJ ∈ V J of length J given a source
sequence x = xI1 = x1, x2, . . . , xI ∈ V I of length
I over a vocabulary V of tokens (e.g. subword
units (Sennrich et al., 2016)). For example, in
our running grammar correction example in Fig. 1,
the source sequence is the ungrammatical sentence
x =“After many years he still dream to become a
super hero .” and the target sequence is the cor-
rected sentence y =“After many years , he still
dreams of becoming a super hero .”. The prob-
ability P (y|x) is factorized using the chain rule:

P (y|x) =
J∏

j=1

P (yj |yj−1
1 ,x). (1)

Instead of predicting the target sequence y directly,
the Seq2Edits model predicts a sequence of N
edit operations. Each edit operation (tn, pn, rn) ∈
T × N0 × V is a 3-tuple that represents the action
of replacing the span from positions pn−1 to pn
in the source sentence with the replacement token
rn associated with an explainable tag tn (T is the
tag vocabulary).1 tn = rn = SELF indicates that
the source span is kept as-is. Insertions are mod-
elled with pn = pn−1 that corresponds to an empty
source span (see the insertion of “,” in Fig. 1), dele-
tions are represented with a special token rn = DEL.
The edit operation sequence for our running exam-
ple is shown in Fig. 1. The target sequence y can
be obtained from the edit operation sequence using
Algorithm 1.

1In our ablation experiments without tags, each edit opera-
tion is represented by a 2-tuple (pn, rn) instead.

Algorithm 1 ApplyEdits()

1: p0 ← 0 {First span starts at 0.}
2: y← ε {Initialize y with the empty string.}
3: for n← 1 to N do
4: if tn = SELF then
5: y← concat(y, xpnpn−1)
6: else if rn 6= DEL then
7: y← concat(y, rn)
8: end if
9: end for

10: return y

Our motivation behind using span-level edits
rather than token-level edits is that the representa-
tions are much more compact and easier to learn
since local dependencies (within the span) are eas-
ier to capture. For some of the tasks it is also more
natural to approach the problem on the span-level:
a grammatical error is often fixed with more than
one (sub)word, and span-level edits retain the lan-
guage modelling aspect within a span.

Our representation is flexible as it can represent
any sequence pair. As an example, a trivial (but
not practical) way to construct an edit sequence for
any pair (x,y) is to start with a deletion for the
entire source sentence x (p1 = I , r1 = DEL) and
then insert the tokens in y (pj+1 = I , rj+1 = yj
for j ∈ [1, J ]).

Edit sequences are valid iff. spans are in a mono-
tonic left-to-right order and the final span ends at
the end of the source sequence, i.e.:

pN = I ∧ ∀n ∈ [1, N) : pn ≤ pn+1 (2)

None of our models produced invalid sequences at
inference time even though we did not implement
any feasibility constraints.
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2.2 Inference
The output of the edit operation model is a se-
quence of 3-tuples rather than a sequence of tokens.
The probability of the output is computed as:

P (y|x) = P (tN1 , p
N
1 , r

N
1 |x)

=

N∏
n=1

P (tn, pn, rn|tn−1
1 , pn−1

1 , rn−1
1 ,x).

(3)

For inference, we factorize the conditional proba-
bilities further as:

P (tn, pn, rn|tn−1
1 , pn−1

1 , rn−1
1 ,x)

=P (tn|tn−1
1 , pn−1

1 , rn−1
1 ,x)

· P (pn|tn1 , pn−1
1 , rn−1

1 ,x)

· P (rn|tn1 , pn1 , rn−1
1 ,x).

(4)

The decoding problem can thus be written as a flat
product of conditional probabilities that correspond
to tag, span and replacement predictions, that are
interleaved:

argmax
N,tN1 ,pN1 ,rN1

P (t1|x) · P (p1|t1,x) · P (r1|t1, p1,x)

·P (t2|t1, p1, r1,x) · · ·P (rN |tN1 , pN1 , rN−1
1 ,x).

(5)

At inference time we perform beam decoding over
this flat factorization to search for the most likely
edit operation sequence. In practice, we scale the
scores for the different target features:

argmax
N,tN1 ,pN1 ,rN1

N∑
n=1

λt logP (tn|tn−1
1 , pn−1

1 , rn−1
1 ,x)

+ λp logP (pn|tn1 , pn−1
1 , rn−1

1 ,x)

+ λr logP (rn|tn1 , pn1 , rn−1
1 ,x).

(6)

where the three scaling factors λt, λp, λr are opti-
mized on the respective development set.

2.3 Neural Architecture
Our neural model (illustrated in Fig. 2) is a gener-
alization of the original Transformer architecture
of Vaswani et al. (2017). Similarly to the standard
Transformer we feed back the predictions of the
previous time step into the Transformer decoder
(A). The feedback loop at time step n is imple-
mented as the concatenation of an embedding of
tn−1, the pn−1-th encoder state, and an embedding

Figure 2: Seq2Edits consists of a Trans-
former (Vaswani et al., 2017) encoder and a
Transformer decoder that is divided horizontally
into two parts (A and B). The tag and span predictions
are located in the middle of the decoder layer stack
between both parts. A single step of prediction is
shown.

Hyper-parameter Base Big
Hidden units 512 1,024
Encoder layers 6 6
Decoder A layers 3 4
Decoder B layers 3 4
No. of parameters (w/o embeddings) 53M 246M

Table 1: The “Base” and “Big” configurations.

of rn−1. The Transformer decoder A is followed
by a cascade of tag prediction and span end posi-
tion prediction. We follow the idea of pointer net-
works (Vinyals et al., 2015) to predict the source
span end position using the attention weights over
encoder states as probabilities. The input to the
pointer network are the encoder states (keys and
values) and the output of the previous decoder layer
(queries). The span end position prediction mod-
ule is a Transformer-style (Vaswani et al., 2017)
single-head attention (“scaled dot-product”) layer
over the encoder states:

P (pn|tn1 , pn−1
1 , rn−1

1 ,x) = softmax(
QKT

√
d

), (7)

where Q is a d-dimensional linear transform of
the previous decoder layer output at time step n,
K ∈ RI×d is a linear transform of the encoder
states, and d is the number of hidden units.

A 6-dimensional embedding of the predicted
tag tn and the encoder state corresponding to the
source span end position pn are fed into yet another
Transformer decoder (B) that predicts the replace-
ment token rn. Alternatively, one can view A and



5150

Text normalization Sentence Sentence Simplification Grammar
English Russian fusion splitting correction

Training data Wikipedia DiscoFuse WikiSplit WikiLarge Lang-8, FCE,
W&I

Number of sentences 881K 816K 4.5M 990K 296K 2M
Task-specific tags Semiotic class Type - - Error tag
Task-specific tag vocabulary size 18 15 15 - - 28
Source tokenization Characters Subwords Subwords Subwords Subwords
Target tokenization Words Subwords Subwords Subwords Subwords
Fraction of changed tokens per sentence 9.9% 15.7% 13.9% 8.7% 52.0% 10.5%
Average source length in tokens (I) 64.9 82.4 36.9 39.8 31.7 14.4
Average target length in tokens (J) 57.3 69.4 31.8 36.5 15.8 13.0
Average number of span-level edits (N ) 9.6 14.2 7.4 11.8 13.1 4.7

Table 2: Statistics for the task-specific training data. The I , J , and N variables are introduced in Sec. 2.1.
Our subword-based systems use the implementation available in Tensor2Tensor (Vaswani et al., 2018) with a
vocabulary size of 32K. The pre-training data is described in the text. See Appendix A for the full tag vocabularies.

B as a single Transformer decoder layer stack, in
which we added the tag prediction and the span end
position prediction as additional layers in the mid-
dle of that stack. We connect the decoders A and B
with residual connections (He et al., 2016) to facili-
tate learning. The network is trained by optimizing
the sum of three cross-entropies that correspond to
tag prediction, span prediction, and replacement
token prediction, respectively.2 In our experiments
without tags we leave out the tag prediction layer
and the loss computed from it. We experiment with
two different model sizes: “Base” and “Big”. The
hyper-parameters for both configurations are sum-
marized in Table 1. Hyper-parameters not listed
here are borrowed from the transformer clean base
and transformer clean big configurations in the
Tensor2Tensor toolkit (Vaswani et al., 2018).

3 Experiments

We evaluate our edit model on five NLP tasks:3

• Text normalization for speech applica-
tions (Sproat and Jaitly, 2016) – converting
number expressions such as “123” to their
verbalizations (e.g. “one two three” or “one
hundred twenty three”, etc.) depending on the
context.

• Sentence fusion (Geva et al., 2019) – merging
two independent sentences to a single coher-
ent one, e.g. “I need his spirit to be free. I can
leave my body.”→ “I need his spirit to be free
so that I can leave my body.”

2We use an unweighted sum as we did not observe gains
from weighting the three losses during training.

3Citations in this bullet list refer to the test sets we used
and do not necessarily point to the pioneering works.

• Sentence splitting & rephrasing (Botha et al.,
2018) – splitting a long sentence into two
fluent sentences, e.g. “Bo Saris was born in
Venlo, Netherlands, and now resides in Lon-
don, England.” → “Bo Saris was born in
Venlo , Netherlands. He currently resides in
London, England.”

• Text simplification (Zhang and Lapata, 2017) –
reducing the linguistic complexity of text, e.g.
“The family name is derived from the genus
Vitis.” → “The family name comes from the
genus Vitis.”

• Grammatical error correction (Ng et al., 2014;
Napoles et al., 2017; Bryant et al., 2019) – cor-
recting grammatical errors in written text, e.g.
“In a such situaction”→ “In such a situation”.

Our models are trained on packed examples
(maximum length: 256) with Adafactor (Shazeer
and Stern, 2018) using the Tensor2Tensor (Vaswani
et al., 2018) library. We report results both with
and without pre-training. Our pre-trained models
for all tasks are trained for 1M iterations on 170M
sentences extracted from English Wikipedia revi-
sions and 176M sentences from English Wikipedia
round-trip translated via German (Lichtarge et al.,
2019). For grammatical error correction we use
ERRANT (Bryant et al., 2017; Felice et al., 2016)
to derive span-level edits from the parallel text. On
other tasks we use a minimum edit distance heuris-
tic to find a token-level edit sequence and convert
it to span-level edits by merging neighboring edits.

The task-specific data is described in Table 2.
The number of iterations in task-specific training
is set empirically based on the performance on the
development set (between 20K-75K for fine-tuning,
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Task Feature weights (λ) Iterative refinement Length normalization Identity penalty
Text normalization X
Sentence fusion X
Sentence splitting X
Simplification X X X X
Grammar correction X X X

Table 3: Decoding parameters that are tuned on the respective development sets. Feature weight tuning refers to
the λ-parameters in Sec. 2.2. We use the length normalization scheme from Wu et al. (2016) with the parameter α.

Model Tags Tuning Pre- Text norm. (SER↓) Fusion Splitting Simpl. Grammar (BEA-dev)
size training English Russian (SARI↑) (SARI↑) (SARI↑) P↑ R↑ F0.5 ↑

a Base 1.40 4.13 87.15 58.9 31.87 23.3 11.0 19.0
b Base X 1.36 3.95 87.33 58.9 32.10 22.5 13.3 19.8
c Big X - - 88.77 63.5 33.01 50.1 34.4 45.9
d Big X X - - 88.67 63.6 34.54 53.7 35.3 48.6
e Big X X - - 88.73 63.6 37.16 49.0 38.6 46.5
f Big X X X - - 88.72 63.6 36.30 50.9 39.1 48.0

Table 4: Single model results. For metrics marked with “↑” (SARI, P(recision), R(ecall), F0.5) high scores are
favorable, whereas the sentence error rate (SER) is marked with “↓” to indicate the preference for low values.
Tuning refers to optimizing the decoding parameters listed in Table 3 on the development sets.

between 100K-300K for training from scratch).
Fine-tuning is performed with a reduced learning
rate of 3 × 10−5. For each task we tune a dif-
ferent set of decoding parameters (Table 3) such
as the λ-parameters from Sec. 2.2, on the respec-
tive development sets. For text simplification and
grammatical error correction, we perform multi-
ple beam search passes (between two and four) by
feeding back the output of beam search as input to
the next beam search pass. This is very similar to
the iterative decoding strategies used by Lichtarge
et al. (2019); Awasthi et al. (2019); Ge et al. (2018);
Grundkiewicz et al. (2019) with the difference that
we pass through n-best lists between beam search
passes rather than only the single best hypothesis.
During iterative refinement we follow Lichtarge
et al. (2019) and multiply the score of the identity
mapping by a tunable identity penalty to better con-
trol the trade-off between precision and recall. We
use a beam size of 12 in our rescoring experiments
in Table 10 and a beam size of 4 otherwise.

Table 4 gives an overview of our results on all
tasks. The tag set consists of semiotic class la-
bels (Sproat and Jaitly, 2016) for text normaliza-
tion, discourse type (Geva et al., 2019) for sen-
tence fusion, and ERRANT (Bryant et al., 2017;
Felice et al., 2016) error tags for grammatical error
correction.4 For the other tasks we use a trivial
tag set: SELF, NON SELF, and EOS (end of se-
quence). We report sentence error rates (SERs↓)
for text normalization, SARI↑ scores (Xu et al.,

4Appendix A lists the full task-specific tag vocabularies.

2016) for sentence fusion, splitting, and simplifi-
cation, and ERRANT (Bryant et al., 2017) span-
based P(recision)↑, R(ecall)↑, and F0.5-scores on
the BEA development set for grammar correction.5

Text normalization is not amenable to our form
of pre-training as it does not use subword units and
it aims to generate vocalizations rather than text
like in our pre-training data. All other tasks, how-
ever, benefit greatly from pre-training (compare
rows a & b with rows c & d in Table 4). Pre-
training yields large gains for grammar correction
as the pre-training data was specifically collected
for this task (Lichtarge et al., 2019). Tuning the
decoding parameters (listed in Table 3) gives im-
provements for tasks like simplification, but is less
crucial on sentence fusion or splitting (compare
rows c & d with rows e & f in Table 4). Using tags
is especially effective if non-trivial tags are avail-
able (compare rows a with b, c with d, and e with
f for text normalization and grammar correction).

We next situate our best results (big models with
pre-training in rows e and f of Table 4) in the con-
text of related work.

3.1 Text Normalization

Natural sounding speech synthesis requires the cor-
rect pronunciation of numbers based on context
e.g. whether the string 123 should be spoken as
one hundred twenty three or one two three. Text
normalization converts the textual representation
of numbers or other semiotic classes such as abbre-

5Metrics are marked with “↑” if high values are preferred
and with “↓” if low values are preferred.
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System SER↓
English Russian

Mansfield et al. (2019)∗ 2.77 -
Zhang et al. (2019) 1.80 4.20
This work (semiotic tags) 1.36 3.95

Table 5: Sentence error rates on the English and Rus-
sian text normalization test sets of Sproat and Jaitly
(2016). ∗: best system from Mansfield et al. (2019)
without access to gold semiotic class labels.

System Exact↑ SARI↑
Malmi et al. (2019) 53.80 85.45
Mallinson et al. (2020) 61.31 88.78
Rothe et al. (2019) 63.90 89.52
This work (no tags) 61.71 88.73

Table 6: Sentence fusion results on the DiscoFuse
(Geva et al., 2019) test set.

viations to their spoken form while both conveying
meaning and morphology (Zhang et al., 2019). The
problem is highly context-dependent as abbrevi-
ations and numbers often have different feasible
vocalizations. Context-dependence is even more
pronounced in languages like Russian in which
the number words need to be inflected to preserve
agreement with context words.

We trained our models on the English and Rus-
sian data provided by Sproat and Jaitly (2016).
Similarly to others (Zhang et al., 2019; Sproat and
Jaitly, 2016) we use characters on the input but
full words on the output side. Table 5 shows that
our models perform favourably when compared
to other systems from the literature on both En-
glish and Russian. Note that most existing neu-
ral text normalization models (Zhang et al., 2019;
Sproat and Jaitly, 2016) require pre-tokenized in-
put6 whereas our edit model operates on the unto-
kenized input character sequence. This makes our
method attractive for low resource languages where
high-quality tokenizers may not be available.

3.2 Sentence Fusion
Sentence fusion is the task of merging two in-
dependent sentences into a single coherent text
and has applications in several NLP areas such
as dialogue systems and question answering (Geva
et al., 2019). Our model is on par with the FE-
LIX tagger (Mallinson et al., 2020) on the Disco-
Fuse dataset (Geva et al., 2019) but worse than
the BERT2BERT model of Rothe et al. (2019) (Ta-
ble 6). We hypothesize that BERT2BERT’s strategy

6Each token in this context is a full semiotic class instance,
for example a full date or money expression.

System Exact↑ SARI↑
Botha et al. (2018) 14.6 60.6
Malmi et al. (2019) 15.2 61.7
Malmi et al. (2019) - SEQ2SEQBERT 15.1 62.3
This work (no tags) 17.0 63.6

Table 7: Sentence splitting results (Botha et al., 2018).

System SARI↑
Malmi et al. (2019) 32.31
Dong et al. (2019) 34.94
Xu et al. (2016) 37.94
Mallinson et al. (2020) 38.13
This work (no tags) 37.16

Table 8: Text simplification results.7

of making use of target-side pre-training under a
language model objective via BERT (Devlin et al.,
2019) is particularly useful for sentence fusion.

3.3 Sentence Splitting & Rephrasing
Sentence splitting is the inverse task of sentence
fusion: Split a long sentence into two fluent shorter
sentences. Our models are trained on the WikiSplit
dataset (Botha et al., 2018) extracted from the edit
history of Wikipedia articles. In addition to SARI
scores we report the number of exact matches in
Table 7. Our edit-based model achieves a higher
number of exact matches and a higher SARI score
compared to prior work on sentence splitting.

3.4 Text Simplification
Our text simplification training set (the WikiLarge
corpus (Zhang and Lapata, 2017)) consists of 296K
examples, the smallest amongst all our training cor-
pora. Table 8 shows that our model is competitive,
demonstrating that it can benefit from even limited
quantities of training data. However, it does not
improve the state of the art on this test set.

3.5 Grammatical Error Correction
For grammatical error correction we follow a multi-
stage fine-tuning setup.8 After training on the com-
mon pre-training data described above, we fine-
tune for 30K steps on the public Lang-8 (Mizu-
moto et al., 2012) corpus, followed by 500 steps
on the FCE (Yannakoudakis et al., 2011) and
W&I (Bryant et al., 2019) corpora. To improve
comparability with related work across the dif-
ferent corpora we use ERRANT (Bryant et al.,

7We report SARI scores as (re)computed by Mallinson
et al. (2020) for all systems in Table 8 to ensure comparability.

8Multi-stage fine-tuning has been proven effective for other
sequence tasks such as machine translation (Khan et al., 2018;
Saunders et al., 2019).
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System BEA-dev CoNLL-14 JFLEG
P↑ R↑ F0.5 ↑ P↑ R↑ F0.5 ↑ GLEU↑

Lichtarge et al. (2019) - - - 65.5 37.1 56.8 61.6
Awasthi et al. (2019) - - - 66.1 43.0 59.7 60.3
Zhao et al. (2019) - - - 67.7 40.6 59.8 -
Choe et al. (2019) 54.4 32.2 47.8 - - - -
Grundkiewicz et al. (2019) 56.1 34.8 50.0 - - - -
Kiyono et al. (2019) - - - 67.9 44.1 61.3 59.7
This work (ERRANT tags) 50.9 39.1 48.0 63.0 45.6 58.6 62.7

Table 9: Single model results for grammatical error correction.

System BEA-test CoNLL-14 JFLEG
P↑ R↑ F0.5 ↑ P↑ R↑ F0.5 ↑ GLEU↑

Lichtarge et al. (2019) - - - 66.7 43.9 60.4 63.3
Awasthi et al. (2019) - - - 68.3 43.2 61.2 61.0
Zhao et al. (2019) - - - 71.6 38.7 61.2 61.0
Ge et al. (2018) - - - 74.1 36.3 61.3 61.4
Choe et al. (2019) 76.2 50.3 69.1 74.8 34.1 60.3 -
Grundkiewicz et al. (2019) 72.3 60.1 69.5 - - 64.2 61.2
Kiyono et al. (2019) 74.7 56.7 70.2 72.4 46.1 65.0 61.4
This work (ERRANT tags)
5-Ensemble 68.8 63.4 67.7 72.0 39.4 61.7 64.2
+ Full sequence rescoring 72.7 62.9 70.5 69.9 44.4 62.7 64.3

Table 10: Ensemble results for grammatical error correction. Our full sequence baseline achieves 68.2 F0.5 on
BEA-test, 63.8 F0.5 on CoNLL-14, and 62.4 GLEU on JFLEG-test.

2017; Felice et al., 2016) to compute span-based
P(recision)↑, R(ecall)↑, and F0.5-scores on the BEA
development and test sets (Bryant et al., 2019),
the M2 scorer (Dahlmeier and Ng, 2012) on the
CoNLL-2014 (Ng et al., 2014) test set, and GLEU↑
on the JFLEG test set (Napoles et al., 2017). How-
ever, the training data used in the literature varies
vastly from system to system which limits compa-
rability as (synthetic) data significantly impacts the
system performance (Grundkiewicz et al., 2019).

Table 9 compares our approach with the best
single model results reported in the literature. Our
model tends to have a lower precision but higher
recall than other systems. We are able to achieve
the highest GLEU score on the JFLEG test set.

To further improve performance, we applied two
techniques commonly used for grammatical error
correction (Grundkiewicz et al., 2019, inter alia):
ensembling and rescoring. Table 10 compares our
5-ensemble with other ensembles in the literature.
Rescoring the n-best list from the edit model with
a big full sequence Transformer model yields sig-
nificant gains, outperforming all other systems in
Table 10 on BEA-test and JFLEG.9

One of our initial goals was to avoid the wasteful
computation of full sequence models when applied
to tasks like grammatical error correction with a

9This resembles the inverse setup of Chollampatt and Ng
(2018) who used edit features to rescore a full sequence model.

high degree of copying. Table 11 summarizes CPU
decoding times on an Intel R© Xeon R© W-2135 Pro-
cessor (12-core, 3.7 GHz).10 We break down the
measurements by English proficiency level. The
full sequence baseline slows down for higher profi-
ciency levels as sentences tend to be longer (second
column of Table 11). In contrast, our edit opera-
tion based approach is faster because it does not
depend on the target sequence length but instead
on the number of edits which is usually small for
advanced and native English speakers. We report
speed-ups of 4.7-4.8x in these cases without using
tags. When using tags, we implemented the fol-
lowing simple heuristics to improve the runtime
(“shortcuts”): 1) If the tag tn = SELF is predicted,
directly set rn = SELF and skip the replacement
token prediction. 2) If the tag tn = EOS is pre-
dicted, set pn = I and rn = EOS and skip the span
end position and the replacement token predictions.
These shortcuts do not affect the results in practice
but provide speed-ups of 5.2x for advanced and
native English compared to a full sequence model.

The speed-ups of our approach are mainly due
to the shorter target sequence length compared to
a full sequence model. However, our inference
scheme in Sec. 2.2 still needs three times more

10We note that our experimental decoder implementation is
not optimized for speed, and that absolute runtimes may differ
with more efficient implementations.
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English Avg. source Avg. number Sentences per second↑
proficiency length (I) of edits (N ) Full Edit operation based

sequence ERRANT tags No tags ERRANT tags
(with shortcuts)

Beginner (CEFR-A) 20.4 7.8 0.34 0.55 (1.6x) 0.69 (2.0x) 0.69 (2.0x)
Intermediate (CEFR-B) 25.9 6.0 0.34 0.83 (2.4x) 1.04 (3.0x) 1.07 (3.1x)
Advanced (CEFR-C) 23.0 4.2 0.31 1.21 (3.9x) 1.46 (4.7x) 1.59 (5.2x)
Native 26.6 4.0 0.26 1.03 (4.0x) 1.24 (4.8x) 1.34 (5.2x)

Table 11: CPU decoding speeds without iterative refinement on BEA-dev averaged over three runs. Speed-ups
compared to the full sequence baseline are in parentheses.

Oracle constraints Text normalization (SER↓) Grammar correction (BEA-dev)
Tag (tn) Span end position (pn) English Russian P↑ R↑ F0.5 ↑

1.36 3.95 55.2 36.2 50.0
X 0.36 3.63 58.6 53.5 57.5

X 0.48 3.58 64.9 65.5 65.0
X X 0.24 3.58 71.9 71.9 71.9

Table 12: Partially constraining the decoder with oracle tags and/or span positions (no iterative refinement).

time steps than the number of edits, i.e. around
4.0 × 3 = 12 for native English (last row in Ta-
ble 11). The observed speed-ups of 4.0x-5.2x are
even larger than we would expect based on an av-
erage source length of I = 26.6. One reason for
the larger speed-ups is that the decoding runtime
complexity under the Transformer is quadratic in
length, not linear. Another reason is that although
the three elements are predicted sequentially, not
each prediction step is equally expensive: the soft-
max for the tag and span predictions is computed
over only a couple of elements, not over the full
32K subword vocabulary. Furthermore, efficient
decoder implementations could reuse most of the
computation done for the tag prediction for the
span position.

3.6 Oracle Experiments
Our model can be viewed from a multi-task per-
spective since it tries to predict three different fea-
tures (tag, span position, and replacement token).
To better understand the contributions of these dif-
ferent components we partially constrained them
using the gold references for both text normaliza-
tion and grammatical error correction tasks. We
avoid constraining the number of edits (N ) in these
oracle experiments by giving the constrained de-
coder the option to repeat labels in the reference.
Table 12 shows that having access to the gold
tags and/or span positions greatly improves per-
formance. We hypothesize that these gains can be
largely attributed to the resolution of confusion be-
tween self and non-self. An interesting outlier is
text normalization on Russian which benefits less
from oracle constraints. This suggests that the chal-

System Tagging accuracy
P↑ R↑ F0.5 ↑

Lasertagger 54.9 33.7 48.8
This work (unconstrained) 67.9 25.8 51.2
This work (span-constrained) 94.7 52.4 81.5

Table 13: Tagging accuracy on BEA-dev (no iterative
refinement).

lenges for Russian text normalization are largely in
predicting the replacement tokens, possibly due to
the morphological complexity of Russian.

Since the motivation for using tags was to im-
prove explainability we also evaluated the accu-
racy of the tag prediction on grammatical error
correction. For comparison, we trained a baseline
Lasertagger (Malmi et al., 2019) on a subset of
the BEA training set (30.4K examples) to predict
the ERRANT tags. Insertions are represented as
composite tags together with the subsequent tag
such that the total Lasertagger vocabulary size is
213. The model was initialized from a pre-trained
BERT (Devlin et al., 2019) checkpoint. Decod-
ing was performed using an autoregressive strategy
with a Transformer decoder. We used the default
hyper-parameters without any task-specific opti-
mization. Table 13 shows that the tag prediction of
our unconstrained model is more accurate than the
Lasertagger baseline. Errors in this unconstrained
setup are either due to predicting the wrong tag or
predicting the wrong span. To tease apart these
error sources we also report the accuracy under or-
acle span constraints. Our span constrained model
achieves a recall of 52.4%, i.e. more than half of
the non-self tags are classified correctly (28 tags).
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4 Related Work

A popular way to tackle NLP problems with over-
lap between input and output is to equip seq2seq
models with a copying mechanism (Jia and Liang,
2016; Zhao et al., 2019; Chen and Bansal, 2018;
Nallapati et al., 2016; Gulcehre et al., 2016; See
et al., 2017; Gu et al., 2016), usually borrowing
ideas from pointer networks (Vinyals et al., 2015)
to point to single tokens in the source sequence. In
contrast, we use pointer networks to identify entire
spans that are to be copied which results in a much
more compact representation and faster decoding.
The idea of using span-level edits has also been
explored for morphological learning in the form of
symbolic span-level rules, but not in combination
with neural models (Elsner et al., 2019).

Our work is related to neural multi-task learning
for NLP (Collobert and Weston, 2008; Dong et al.,
2015; Luong et al., 2015; Søgaard and Goldberg,
2016). Unlike multi-task learning which typically
solves separate problems (e.g. POS tagging and
named entity recognition (Collobert and Weston,
2008) or translation into different languages (Lu-
ong et al., 2015; Dong et al., 2015)) with the same
model, our three output features (tag, source span,
and replacement) represent the same output se-
quence (Algorithm 1). Thus, it resembles the
stack-propagation approach of Zhang and Weiss
(2016) who use POS tags to improve parsing per-
formance.

A more recent line of research frames sequence
editing as a labelling problem using labels such
as ADD, KEEP, and DELETE (Ribeiro et al., 2018;
Dong et al., 2019; Mallinson et al., 2020; Malmi
et al., 2019; Awasthi et al., 2019), often relying
heavily on BERT (Devlin et al., 2019) pre-training.
Similar operations such as insertions and deletions
have also been used for machine translation (Gu
et al., 2019b; Stern et al., 2019; Gu et al., 2019a;
Östling and Tiedemann, 2017; Stahlberg et al.,
2018). We showed in Sec. 3 that our model often
performs similarly or better than those approaches,
with the added advantage of providing explanations
for its predictions.

5 Discussion

We have presented a neural model that represents
sequence transduction using span-based edit op-
erations. We reported competitive results on five
different NLP problems, improving the state of the
art on text normalization, sentence splitting, and

the JFLEG test set for grammatical error correc-
tion. We showed that our approach is 2.0-5.2 times
faster than a full sequence model for grammatical
error correction. Our model can predict labels that
explain each edit to improve the interpretability
for the end-user. However, we do not make any
claim that Seq2Edits can provide insights into the
internal mechanics of the neural model. The un-
derlying neural model in Seq2Edits is as much of a
black-box as a regular full sequence model.

While our model is advantageous in terms of
speed and explainability, it does have some weak-
nesses. Notably, the model uses a tailored architec-
ture (Figure 2) that would require some engineering
effort to implement efficiently. Second, the output
of the model tends to be less fluent than a regular
full sequence model, as can be seen from the exam-
ples in Table 19. This is not an issue for localized
edit tasks such as text normalization but may be a
drawback for tasks involving substantial rewrites
(e.g. GEC for non-native speakers).

Even though our approach is open-vocabulary,
future work will explore task specific restrictions.
For example, in a model for dialog applications,
we may want to restrict the set of response tokens
to a predefined list. Alternatively, it may be useful
to explore generation in a non left-to-right order to
improve the efficiency of inference.

Another line of future work is to extend our
model to sequence rewriting tasks, such as Ma-
chine Translation post-editing, that do not have
existing error-tag dictionaries. This research would
require induction of error tag inventories using ei-
ther linguistic insights or unsupervised methods.
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