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Abstract

Named Entity Recognition (NER) in domains
like e-commerce is an understudied prob-
lem due to the lack of annotated datasets.
Recognizing novel entity types in this do-
main, such as products, components, and at-
tributes, is challenging because of their lin-
guistic complexity and the low coverage of ex-
isting knowledge resources. To address this
problem, we present a bootstrapped positive-
unlabeled learning algorithm that integrates
domain-specific linguistic features to quickly
and efficiently expand the seed dictionary. The
model achieves an average F1 score of 72.02%
on a novel dataset of product descriptions, an
improvement of 3.63% over a baseline BiL-
STM classifier, and in particular exhibits better
recall (4.96% on average).

1 Introduction

The vast majority of existing named entity recogni-
tion (NER) methods focus on a small set of promi-
nent entity types, such as persons, organizations,
diseases, and genes, for which labeled datasets are
readily available (Tjong Kim Sang and De Meulder,
2003; Smith et al., 2008; Weischedel et al., 2011;
Li et al., 2016). There is a marked lack of studies in
many other domains, such as e-commerce, and for
novel entity types, e.g. products and components.

The lack of annotated datasets in the e-
commerce domain makes it hard to apply super-
vised NER methods. An alternative approach is
to use dictionaries (Nadeau et al., 2006; Yang
et al., 2018), but freely available knowledge re-
sources, e.g. Wikidata (Vrandečic and Krötzsch,
2014) or YAGO (Suchanek et al., 2007), contain
only very limited information about e-commerce
entities. Manually creating a dictionary of suffi-
cient quality and coverage would be prohibitively
expensive. This is amplified by the fact that in
the e-commerce domain, entities are frequently ex-

pressed as complex noun phrases instead of proper
names. Product and component category terms
are often combined with brand names, model num-
bers, and attributes (“hard drive” → “SSD hard
drive” → “WD Blue 500 GB SSD hard drive”),
which are almost impossible to enumerate exhaus-
tively. In such a low-coverage setting, employing a
simple dictionary-based approach would result in
very low recall, and yield very noisy labels when
used as a source of labels for a supervised machine
learning algorithm. To address the drawbacks of
dictionary-based labeling, Peng et al. (2019) pro-
pose a positive-unlabeled (PU) NER approach that
labels positive instances using a seed dictionary,
but makes no label assumptions for the remain-
ing tokens (Bekker and Davis, 2018). The authors
validate their approach on the CoNLL, MUC and
Twitter datasets for standard entity types, but it
is unclear how their approach transfers to the e-
commerce domain and its entity types.

Contributions We adopt the PU algorithm of
Peng et al. (2019) to the domain of consumer elec-
tronic product descriptions, and evaluate its effec-
tiveness on four entity types: Product, Component,
Brand and Attribute. Our algorithm bootstraps
NER with a seed dictionary, iteratively labels more
data and expands the dictionary, while account-
ing for accumulated errors from model predictions.
During labeling, we utilize dependency parsing to
efficiently expand dictionary matches in text. Our
experiments on a novel dataset of product descrip-
tions show that this labeling mechanism, combined
with a PU learning strategy, consistently improves
F1 scores over a standard BiLSTM classifier. Iter-
ative learning quickly expands the dictionary, and
further improves model performance. The pro-
posed approach exhibits much better recall than
the baseline model, and generalizes better to un-
seen entities.
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Algorithm 1: Iterative Bootstrapping NER
Input: Dictionary Dseed, Corpus C,

threshold K, max iterations I
Result: Dictionary D+, Classifier L
D+ ← Dseed;
Cdep ← dependency parse(C);
i← 0;
while not converged(D+) and i < I do

Clab ← label(C,D+);
Cexp ← expand labels(Clab, Cdep);
L← train classifier(Cexp);
Cpred ← predict(Cexp, L);
for e← Cpred do

if e /∈ D+ and freq(e) > K then
D+ ← add entity(D+, e);

end
end
i← i+ 1;

end

2 NER with Positive Unlabeled Learning

In this section, we first describe the iterative boot-
strapping process, followed by our approach to
positive unlabeled learning for NER (PU-NER).

2.1 Iterative Bootstrapping
The goal of iterative bootstrapping is to succes-
sively expand a seed dictionary of entities to label
an existing training dataset, improving the quality
and coverage of labels in each iteration (see Algo-
rithm 1). In the first step, we use the seed dictionary
to assign initial labels to each token. We then utilize
the dependency parses of sentences to label tokens
in a “compound” relation with already labeled to-
kens (see Figure 1). In the example “hard drive”
is labeled a Component based on the initial seed
dictionary, and according to its dependency parse
it has a “compound” relation with “dock”, which is
therefore also labeled as a Component. We employ
an IO label scheme, because dictionary entries are
often more generic than the specific matches in text
(see the previous example), which would lead to
erroneous tags with schemes such as BIO.

In the second step, we train a NER model on the
training dataset with new labels assigned. We re-
peat these steps at most I times, and in each subse-
quent iteration we use the trained model to predict
new token-level labels on the training data. Novel
entities predicted more than K times are included
in the dictionary for the next labeling step. The

Figure 1: Red check marks indicate tokens labeled by
the dictionary, black those based on label expansion us-
ing dependency information. The green box shows the
true extent of the multi-token Component entity.

Figure 2: Architecture of the positive unlabeled NER
(PU-NER) model.

threshold K ensures that we do not introduce noise
in the dictionary with spurious positively labeled
entities.

2.2 PU-NER Model

As shown in Figure 2, our model first uses
BERT (Devlin et al., 2018) to encode the sub-word
tokenized input text into a sequence of contextual-
ized token representations {z1, ..., zL}, followed by
a bidirectional LSTM (Lample et al., 2016) layer to
model further interactions between tokens. Similar
to Devlin et al. (2018), we treat NER as a token-
level classification task, without using a CRF to
model dependencies between entity labels. We use
the vector associated with the first sub-word token
in each word as the input to the entity classifier,
which consists of a feedforward neural network
with a single projection layer. We use back propa-
gation to update the training parameters of the Bi-
LSTM and the final classifier, without fine-tuning
the entire BERT model.

Dictionary-based labeling achieves high preci-
sion on the matched entities but low recall. This
fits the positive unlabeled setting (Elkan and Noto,
2008), which assumes that a learner only has ac-
cess to positive examples and unlabeled data. Thus,
we consider all tokens matched by the dictionary
as positive, and consider all other tokens to be unla-
beled. The goal of PU learning is then to estimate
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the true risk regarding the expected number of pos-
itive examples remaining in the unlabeled data. We
define the empirical risk as R̂l = 1

n

∑n
i l(ŷi, yi)

and assume the class prior to be equal to real dis-
tribution of examples in the data πp = P (Y = 1),
and πn = P (Y = 0). As the model tends to pre-
dict the positive labels correctly during training, i.e.
l(ŷi

p, 1) declines to a small value. We follow Peng
et al. (2019) and combine risk estimation with a
non-negative constraint:

R̂l =
1

np

np∑
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l(ŷi
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+max
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0,

1

nu

nu∑
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l(ŷi
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np

np∑
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l(ŷi
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3 Dataset

E-commerce covers a wide range of complex entity
types. In this work, we focus on electronic prod-
ucts, e.g. personal computers, mobile phones, and
related hardware, and define the following entity
types: Products, i.e. electronic consumer devices
such as mobiles, laptops, and PCs. Products may
be preceded by a brand and include some form of
model, year, or version specification, e.g. “Galaxy
S8” or “Dell Latitude 6400 multimedia notebook”.
Components are parts of a product, typically with
a physical aspect, e.g. “battery”, or “multimedia
keyboard”.1 Brand refers to producers of a prod-
uct or component, e.g. ”Samsung”, or ”Dell”. At-
tributes are units associated with components, e.g.
size (“4 TB”), or weight (“3 kg”).

To create our evaluation dataset, we use the
Amazon review dataset (McAuley et al., 2015),2

a collection of product metadata and customer re-
views from Amazon. The metadata includes prod-
uct title, a descriptive text, category information,
price, brand, and image features. We use only en-
tries in the Electronics/Computers subcategory and
randomly sample product descriptions of length
500–1000 characters, yielding a dataset of 24,272
training documents. We randomly select another
100 product descriptions to form the final test set.
These are manually annotated by 2 trained linguists,
with disagreements resolved by a third expert an-
notator. Token-level inter-annotator agreement was

1Non-physical product features and software, such as
“Toshiba Face Recognition Software”, or “Windows 7” are
not considered as components.

2http://jmcauley.ucsd.edu/data/amazon/links.html

high (Krippendorf’s α = 0.7742). The test doc-
uments contain a total of 27, 108 tokens (1, 493
Product, 3, 234 Component, 1, 485 Attribute, and
443 Brand).

4 Experiments

To evaluate our proposed model (PU), we compare
it against two baselines: (1) dictionary-only label-
ing (Dictionary), and (2) our model with standard
cross-entropy loss instead of the PU learning risk
(BiLSTM). The BiLSTM model is trained in a su-
pervised fashion, treating all non-dictionary entries
as negative tokens. The BiLSTM and PU models
were implemented using AllenNLP (Gardner et al.,
2018). We use SpaCy3 for preprocessing, depen-
dency parsing, and dictionary-based entity labeling.
We manually define seed dictionaries for Product
(6 entries), Component (60 entries) and Brand (13
entries). For Attributes, we define a set of 8 regular
expressions to pre-label the dataset. Following pre-
vious works, we evaluate model performance using
token-level F1 score.

There are two options to estimate the value of
the class prior πp. One approach is to treat πp as a
hyperparameter which is fixed during training. An-
other option is suggested in Peng et al. (2019), who
specify an initial value for πp to start bootstrapping,
but recalculate πp after several train-relabel steps
based on the predicted entity type distribution. In
our work, we treated πp as a fixed hyperparameter
with a value of πp = 0.01.

We run our bootstrapping approach for I = 10
iterations, and report the F1 score of the best itera-
tion.

4.1 Results and Discussion

Table 1 shows the F1 scores of several model abla-
tions by entity type on our test dataset. From the
table, we can observe: 1) The PU algorithm outper-
forms the simpler models for most classes, which
demonstrates the effectiveness of the PU learning
framework for NER in our domain. 2) Dependency
parsing is a very effective feature for Component
and Product, and it strongly improves the overall
F1 score. 3) The iterative training strategy yields
a significant improvement for most classes. Even
after several iterations, it still finds new entries to
expand the dictionaries (Figure 3).

The Dictionary approach shows poor perfor-
mance on average, which is due to the low recall

3https://spacy.io/
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Entity Type Dictionary BiLSTM PU PU+Dep PU+Iter PU+Dep+Iter

Component 46.19 65.98 66.89 67.38 68.67 70.66
Product 16.78 60.23 60.24 65.05 60.24 67.07
Brand 49.74 74.06 74.84 76.24 76.24 76.24
Attribute 7.05 73.30 73.84 74.14 74.14 74.14

All 29.94 68.39 68.95 70.70 69.82 72.02

Table 1: Token-Level F1 scores on the test set. The unmodified PU algorithm achieves an average F1 score of
68.95%. Integrating dependency parsing (Dep) and iterative relabeling (Iter) raises the F1 score to 72.02%, an
improvement of 42.08% over a dictionary-only approach, and 3.63% over a BiLSTM baseline.

caused by very limited entities in the dictionary.
PU greatly outperforms the dictionary approach,
and has an edge in F1 score over the BiLSTM model.
The advantages of PU gradually accumulate with
each iteration. For Product, the combination of PU
learning, dependency parsing-based labeling, and
iterative bootstrapping, yields a 7% improvement
in F1 score, for Component, it is still 5%.

Figure 3: Recall curves of the BiLSTM+Dep and
PU+Dep model for Component, Product, Brand, and
Attribute. PU+Dep boosts recall by 3.03% on average,
with a max average difference of 4.96% after 5 itera-
tions.

PU Learning Performance Figure 3 shows that
the PU algorithm especially improves recall over
the baseline classifier for Components, Products
and Brands. With each iteration step, the PU model
is increasingly better able to predict unseen entities,
and achieves higher recall scores than the BiLSTM
model. While the baseline curve on Brands stays
almost flat during iterations, PU consistently im-
proves recall as new entities are added into dictio-
nary. For Attributes, however, both models exhibit
about the same level of recall, which in addition is
largely unaffected by the number of iterations.

This suggests that PU learning better estimates
the true loss in the model. In a fully supervised

setting, a standard classification loss function can
accurately describe the loss on positive and nega-
tive samples. However, in the positive unlabeled
setting, many unlabeled samples may actually be
positive, and therefore the computed loss should
not strongly push the model towards the negative
class. We therefore want to quantify how much the
loss is overestimated due to false negative samples,
so that we can appropriately reduce this loss using
the estimated real class distribution.

Error Analysis Both PU and the baseline model
in some cases have difficulties predicting Attributes
correctly. This can be due to spelling differences be-
tween train and test data (e.g. ”8 Mhz” vs ”8Mhz”),
but also because of unclean texts in the source doc-
uments. Another source of errors is the fixed word
piece vocabulary of the pre-trained BERT model,
which often splits unit terms such as ”Mhz” into
several word pieces. Since we use only the first
word piece of a token for prediction, this means
that signals important for prediction of the Attribute
class may get lost. This suggests that for technical
domains with very specific vocabulary, tokeniza-
tion is important to allow the model to better repre-
sent the meaning of each word piece.

5 Related work

Recent work in positive-unlabeled learning in
the area of NLP includes deceptive review detec-
tion (Ren et al., 2014), keyphrase extraction (Ster-
ckx et al., 2016) and fact check-worthiness de-
tection (Wright and Augenstein, 2020), see also
(Bekker and Davis, 2018) for a survey. Our ap-
proach extends the work of Peng et al. (2019) in
a novel domain and for challenging entity types.
In the area of NER for e-commerce, Putthividhya
and Hu (2011) present an approach to extract prod-
uct attributes and values from product listing titles.
Zheng et al. (2018) formulate missing attribute
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value extraction as a sequence tagging problem,
and present a BiLSTM-CRF model with attention.
Pazhouhi (2018) studies the problem of product
name recognition, but uses a fully supervised ap-
proach. In contrast, our method is semi-supervised
and uses only very few seed labels.

6 Conclusion

In this work, we introduce a bootstrapped, iterative
NER model that integrates a PU learning algorithm
for recognizing named entities in a low-resource
setting. Our approach combines dictionary-based
labeling with syntactically-informed label expan-
sion to efficiently enrich the seed dictionaries. Ex-
perimental results on a dataset of manually an-
notated e-commerce product descriptions demon-
strate the effectiveness of the proposed framework.
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