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Abstract

Pro-drop languages such as Arabic, Chinese, Italian or Japanese allow morphologically null but referential

arguments in certain syntactic positions, called anaphoric zero-pronouns. Much NLP work on anaphoric

zero-pronouns (AZP) is based on gold mentions, but models for their identification are a fundamental

prerequisite for their resolution in real-life applications. Such identification requires complex language

understanding and knowledge of real-world entities. Transfer learning models, such as BERT, have re-

cently shown to learn surface, syntactic, and semantic information,which can be very useful in recognizing

AZPs. We propose a BERT-based multilingual model for AZP identification from predicted zero pronoun

positions, and evaluate it on the Arabic and Chinese portions of OntoNotes 5.0. As far as we know, this is

the first neural network model of AZP identification for Arabic; and our approach outperforms the state-

of-the-art for Chinese. Experiment results suggest that BERT implicitly encode information about AZPs

through their surrounding context.

1 Introduction

Empty categories provide an important source of syntactic information about the phonetically null arguments in pro-

drop languages such as Arabic (Eid, 1983), Chinese (Li and Thompson, 1979), Italian (Di Eugenio, 1990), Japanese

(Kameyama, 1985), and others (Bever and Sanz, 1997; Kim, 2000). The use of empty categories started with Penn

Treebanks (Marcus et al., 1993), followed by Arabic Treebank (Maamouri et al., 2004), Chinese Treebank (Xue et

al., 2005) and other Penn-style series. Empty categories are used to represent traces, such as, movement operations

in interrogative sentence, also to represent right node raising which is a shared argument in the rightmost constituent

of a coordinate structure. Another usage of empty categories is zero-pronouns (ZP) which are omitted pronouns

in places where they are expected to be, and function as overt pronouns. Anaphoric zero pronouns (AZP) are ZPs

that corefer to one or more noun phrases in a preceding text. The following example of an AZP comes from the

Arabic section of OntoNotes:

....افلتخماعامتجا*دیری،ةیادبلانمهناذا،يلودلارمتؤمللهتسامحمدعيهشوبنعىرخلأاةقرافملا..

Ironically, Bush did not show any enthusiasm for the international conference, because since the beginning, (he) wanted to

attend another conference ...

In the example, the ZP indicated with ’*’ refers to the gap position of an omitted pronoun (In OntoNotes 5.0, ZPs

are denoted as * in Arabic text, and *pro* in Chinese). The omitted pronoun refers to a singular masculine person

that has been mentioned previously, in the example ”Bush/ شوب ”. In Arabic, we deduce the reference information

from the context, especially the verb that precedes the AZP, in the example the verb is ”wanted/ دیری ”. Since English

is not a pro-drop language (White, 1985), the AZP gap position is translated into an overt pronoun (he). The AZP

problem has inspired much research because it benefits many natural language processing tasks such as machine

translation (Mitkov and Schmidt, 1998), and coreference resolution (Mitkov et al., 2000). Recently, there has been

a great deal of research on AZPs for Chinese (Kong et al., 2019; Yin et al., 2018; Chang et al., 2017; Liu et al.,

2017; Yin et al., 2017), Arabic (Aloraini and Poesio, 2020), Japanese (Shimazu et al., 2020), Korean (Jung and

Lee, 2018), and other languages (Grigorova, 2016; Gopal and Jha, 2017). A major drawback of many existing

studies is the assumption that AZP locations are given; hence, they focus primarily on resolving AZPs to their

correct antecedent. However, such assumption does not reflect real-life applications. Another drawback is that

current AZP identification systems rely on language-dependent features and fail to detect many AZP locations. In

addition, some languages do not have an AZP identification system, one of which is Arabic.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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To alleviate the above-mentioned limitations, we investigate the AZP identification task and study if the recently

achieved state-of-the-art transfer learning methods, such as BERT (Devlin et al., 2018), can work well on identify-

ing AZPs. Typically, AZP identification task consists of two steps. The first is the extraction step where potential

ZP locations are extracted. The extraction procedure is based on heuristics and depend on the target language

structure. The second step is classification step which determines which of the extracted candidate are AZP. The

classification step is more challenging because of the varieties and size of the extracted candidates. In this paper,

we propose a multilingual approach to AZP identification based on BERT. We make three main contributions:

• We propose a BERT-based multilingual model and evaluate on languages that differ completely in their mor-

phological structure: Arabic and Chinese. (Arabic is morphologically rich, whereas Chinese’s morphology is

relatively simple (Pradhan et al., 2012))

• Ours is the first neural network-based AZP identification model for Arabic, and it substantially surpasses the

current state-of-the-art on Chinese.

• Our experimental results suggest that BERT representations encode information about AZPs through their

context.

The rest of the paper is organized as follows. We review Arabic and Chinese ZP-related literature, and other

languages as well in Section 2. We explain our proposed model in Section 3. We discuss the evaluation settings in

Section 4. We show the results and discuss them in Section 5. We conclude in Section 6.

Figure 1: Chinese ZPs appear before a VP node (left), and Arabic ZPs appear after the verb of a VP head (right).In

OntoNotes 5.0, Chinese AZPs are annotated as *pro* and Arabic AZPs as *.

2 Related Work

AZP identification task has been considered independently, but also as a prerequisite step before AZP resolution

task because the detection has a heavy impact on the resolution (Kong et al., 2019).

Arabic: There have been a few studies devoted to AZPs and empty categories in general. Green et al. (2009)

proposed a conditional-random-field (CRF) sequence classifier to detect Arabic noun phrases, and captured ZPs

implicitly. Bakr et al. (2009) applied a statistical approach to detect empty categories. Gabbard (2010) proposed

a pipeline made of maximum entropy classifiers which jointly make a CRF to retrieve Arabic empty categories.

Aloraini and Poesio (2020) proposed the first neural model for resolving Arabic AZP, but they did not consider the

AZP identification step. As far as we know, no previous work has considered Arabic AZP identification.

Chinese: Converse (2006) studied AZP resolution and applied a rule-based approach that employed Hobbs

algorithm (Hobbs, 1978) to resolve ZPs in the Chinese Treebank; however, did not attempt to automatically iden-

tify AZP. Yeh and Chen (2006) is another rule-based approach, for AZP resolution and also used a set of hand-

engineered rules to identify AZPs. Zhao and Ng (2007), the first machine learning approach to Chinese AZPs

identification and resolution, by applying decision trees incorporated with a set of syntactic and positional features.

(Kong and Zhou, 2010) employed a tree kernel-based approach to AZP identification and resolution. Chen and

Ng (2013) is an extension of (Zhao and Ng, 2007), they incorporated contextual features for AZP resolution and

applied a combination of syntactic, lexical and other features for the identification. Chen and Ng (2014) proposed

unsupervised techniques to resolve AZPs and applied a set of rules to identify AZP. Chen and Ng (2015) is another

unsupervised approach on the AZP resolution. Recent approaches applying deep-learning neural networks include

Chen and Ng (2016) trained a binary classifier to identify AZP and applied a feed-forward neural network to the

AZP resolution; Yin et al. (2016) used (Chen and Ng, 2016)’s classifier to identify AZPs. For AZP resolution, they

employed an LSTM to represent AZP and two subnetworks (general encoder and local encoder) to capture context-

level and word-level information of the candidates; Yin et al. (2017) also applied (Chen and Ng, 2016)’s classifier
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to detect AZPs and proposed an improved deep memory network to resolve AZPs; and Liu et al. (2017), applied an

attention-based neural network to resolve AZPs and enhanced the performance by training on automatically gen-

erated large-scale training data. Chang et al. (2017) focused primarily on AZP identification and applied an LSTM

neural-network with text and part-of-speech information. Yin et al. (2018), also used an attention-based model, but

combined their network with (Chen and Ng, 2016) features to resolve AZPs. Yin et al. (2019) applied the same

heuristics in (Chen and Ng, 2015) to identify AZPs and applied a collaborative-filtering approach to resolve AZPs.

Kong et al. (2019) identified AZPs using a learning-based classifier with semantic, lexical and syntactic features,

and used coreferential chain information to improve AZP resolution.

Other languages: There has been also a great deal of research on identification and resolution of AZPs, partic-

ularly in Japanese (Yoshimoto, 1988; Kim and Ehara., 1995; Aone and Bennett, 1995; Seki et al., 2002; Isozaki

and Hirao, 2003; Iida et al., 2006; Iida et al., 2007; Sasano et al., 2008; Sasano et al., 2009; Sasano and Kurohashi,

2011; Yoshikawa et al., 2011; Hangyo et al., 2013; Iida et al., 2015; Yoshino et al., 2013; Yamashiro et al., 2018),

but also in other languages, including Korean (Han, 2004; Byron et al., 2006), Spanish (Ferrández and Peral, 2000;

Rello and Ilisei, 2009), Portuguese (Rello et al., 2012), Romanian (Mihăilă et al., 2011), Bulgarian (Grigorova,

2013), and Sanskrit (Gopal and Jha, 2017). Iida and Poesio (2011) proposed the first multilingual approach for

AZP resolution.

Current approaches suffer from one (or more) of the following. First, they assume AZPs are available; so they

focus mainly on the resolution part. Second, they apply on a private or very small size corpus. Third, they rely on

an extensive set of features or language-dependent rules to identify AZP.

3 Model

To identify AZPs, context understanding and semantic knowledge of entities are essential in Chinese (Huang, 1984)

as well as in Arabic which requires, in addition, deep understanding of its complex morphology (Alnajadat, 2017).

Recently, it has been shown that BERT (Devlin et al., 2018) can capture structural properties of a language, such as

its surface, semantic, and syntactic aspects (Jawahar et al., 2019) which seems suitable for the AZP identification

task. Therefore, we use BERT to produce representations for ZP candidates. Our model is a binary classifier that

takes an automatically predicted ZP candidate as input, and classifies it as an AZP or not. In this section, we first

give an overview of BERT and its adaptation modes. We then describe how we generate AZP candidates, and how

we represent them. Finally, we present the training objective and hyperparameter tuning settings.

3.1 BERT

BERT is a language representation model consisting of multiple stacked Transformers (Vaswani et al., 2017).

BERT was pretrained on a large amount of unlabeled text, and produces distributional vectors for words and con-

texts. BERT was pretrained on different settings, we use BERT-base Multilingual which was pretrained on many

languages, including Chinese and Arabic, and is publicly available1. BERT has two modes of adaptation: feature

extraction and fine-tuning. Feature extraction (also called feature-based) is when BERT representations are used

as they were originally pretrained, without any further training. Fine-tuning is the process of slightly adjusting

BERT’s parameters for a target task. Feature extraction is computationally cheaper and might be more suitable

for a specific task (Peters et al., 2019). Fine-tuning is more convenient to utilize, but restricted to several general-

purpose tasks. AZP identification task was not pretrained as part of BERT tasks and not directly applicable to fine

tuning mode without any modifications to BERT’s architecture. We employ feature extraction mode to represent

AZP candidate in our classifier.

3.2 Candidate Generation

Although ZPs are annotated in OntoNotes, our model works off automatically predicted candidates. ZP locations

differ in Chinese and Arabic. In Chinese, ZPs appear before a VP node while in Arabic they appear after the head

of a VP node 2. An example of Chinese and Arabic ZP locations in Figure 1. We extract Chinese ZP locations

as in (Zhao and Ng, 2007)’s work. They consider every gap before a VP node as a candidate. The number of

candidates can be large. (Kong and Zhou, 2010) showed that if a VP node is in a coordinate structure or modified

by an adverbial node, only its parent VP node is considered, thus decreasing the number of necessary candidates.

For Arabic, we consider every gap after every head of a VP node as a candidate. A candidate is positive if it is an

AZP, negative otherwise. Both approaches result in extracting many negatives examples and a small number of

positive examples. The high imbalance between the two classes can make a model biased; we address the problem

in Section 5.

1https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip
2There are two types of word order for Arabic: Subject-Verb-Object and Verb-Subject-Object. Both are used and acceptable.

In the annotation process, Arabic Treebank sets the Verb-Subject-Object as the official order.
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3.3 Input Representation

We represent AZPs by their surrounding context, specifically, we represent each candidate by its VP headword and

its context window of two words (left and right). Consider a sentence with a gap candidate C at position i, so its

surrounding context at positions i-2, i-1, i+1, i+2.

sentence = (w1, w2, ...wi−2, wi−1, Ci, wi+1, wi+2, .., wn) (1)

We feed sentence into BERT feature extraction mode as input and it outputs embeddings of every word of

sentence.

embeddings = BERT (sentence) (2)

We extract the embeddings of the candidate position and its surrounding context. In our experiments, BERT

Tokenizer, Wordpiece (Wu et al., 2016), segmented many Arabic words into multiple sub-tokens, each with its

own embeddings. For example, the word sleeping might be segmented into two sub-tokens sleep and ##ing. One

way to represent word sub-tokens is to compute their mean; therefore, we create the function µ which computes

the mean of sub-token embeddings. We join the AZP context representations together into a value called azp.

a1 = µ(embeddings(i−2)) (3)

a2 = µ(embeddings(i−1)) (4)

a3 = µ(embeddings(i)) (5)

a4 = µ(embeddings(i+1)) (6)

a5 = µ(embeddings(i+2)) (7)

azp = [a1, a2, a3, a4, a5] (8)

azp encodes information about the candidate context and serves as input to our classifier. It is possible to extend

the AZP window to more context but we empirically find context window of size 2 to be sufficiently effective.

layer1 = f(W1azp+ b1) (9)

layer2 = f(W2 layer1 + b2) (10)

output = f(W3 layer2 + b3) (11)

The binary classifier is a multi-layered perceptrons consisting of two layers and one output layer. f is the ReLU

activation function (Nair and Hinton, 2010). Each layer in the classifier has learning parameters W and b. The

input is then classified to be either an AZP or not.

3.4 Training Objective

The training objective of our classifier is binary cross-entropy loss:

J(θ) = − 1

N

N∑
i=1

[yi log ŷi + (1− yi) log (1− ŷi)] (12)

θ represents the set of learning parameters in the model. N is the number of training data. yi is the true label of
training i and ŷi its predicted label.

3.5 Hyperparameter Tuning

In the classifier, we employ two layers and initialize each one’s weights using Glorot and Bengio (2010)’s method.

We also add a dropout regularization between the two layers and the output layer. We tune the hyperparameters

based on the development sets. Table 1 shows the hyperparameter settings.

4 Evaluation

4.1 Datasets

We evaluate our model on the Arabic and Chinese subsets of OntoNotes 5.0, which were used in the the official

CoNLL-2012 shared task (Pradhan et al., 2012).

Chinese training and development sets contain AZPs, but the test set does not. Therefore, we train the model using

the training set and we use the development set as the test set, a practice followed in prior research (Chen and

Ng, 2013; Chen and Ng, 2014; Chen and Ng, 2016; Kong et al., 2019). We reserve 20% of the training data as a
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Number of units in the first layer 800

Number of units in the second layer 600

Number of training epochs 10

Learning rate 1e-5

Dropout rate 0.5

Optimizer Adam

Table 1: Hyperparameter settings.

Language Category Training Dev Test

Chinese

Documents 1,391 172

Sentences 36,487 6,083

Words 756,063 100,034 N/A

AZPs 12,111 1,713

Arabic

Documents 359 44 44

Sentences 7,422 950 1,003

Words 264,589 30,942 30,935

AZPs 3,495 474 412

Table 2: Statistics on Chinese and Arabic datasets. Chinese test portion does not contain AZPs; therefore, the

development portion is used for evaluation.

development set.

Arabic training, development, and test sets all have AZPs, and we use each set for its purpose. We preprocessed

Arabic text by normalizing all variants of the letter ”alif” and also removing all diacritics.

Detailed statistics about Chinese and Arabic dataset can be found in Table 2.

4.2 Metrics

We evaluate the results in terms of recall, precision, and F-score, as defined in (Zhao and Ng, 2007):

Recall =
AZP hits

Number of AZPs in Key

Precision =
AZP hits

Number of AZPs in Response

Key represents the true set of AZP entities in the dataset, and Response represents the system output of the

identified AZPs in the model. AZP hits are the reported AZP positions in Response which occur in the same

position as in Key.

5 Results

AZP identification results for Arabic are in Table 3, and Chinese in Table 4. The training data is highly imbalanced

because of the ratio of negatives examples to the positive examples. In Arabic there are 5.6 times of negative

examples compared to the positive examples, and in Chinese the negative examples are 16.2 times compared to the

positive ones. To address this problem, we follow (Zhao and Ng, 2007)’s approach by changing the ratio weight r

of sampling positive examples with respect to negative examples. The value r affects precision and recall scores. If

r is high, precision increases but recall decreases. The effect of tuning r on precision, recall and F1 scores on Arabic

and Chinese are in Figures 2 and 3 respectively. F1 scores with different variations of r are not very significant;

however, we choose r that balances between the precision and recall scores.

Prior works (Chen and Ng, 2013; Chen and Ng, 2014; Chen and Ng, 2016; Chang et al., 2017; Kong et al., 2019)

evaluate AZP identification under two settings: gold and system parse because annotation quality can impact the

number of recovering candidates in the extraction step. Gold annotations are available for both languages and we

also automatically parse the data with syntactic trees using the Berkeley Parser (Kitaev et al., 2018) which is a

pre-trained parser using neural networks and self-attention.

5.1 Arabic

As far as we know, there has been no published proposal on Arabic AZP identification. Therefore, we implemented

as a baseline (Chang et al., 2017)’s model, which employs sentence and Part-of-Speech information into a Bi-LSTM

neural network to identify ZPs. We set its embedding layer to the Arabic version of Fasttext (Bojanowski et al.,



27

1 2 3 4 5
The ratio number r

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90
Sc

or
es

Recall
Precision
F1

Figure 2: The effect of tuning the ratio r on recall, precision and F1 scores on the Arabic test set.
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Figure 3: The effect of tuning the ratio r on recall, precision and F1 scores on the Chinese test set.
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2017). We can see in Table 3 that our approach outperforms the baseline in both gold and system settings with F1

scores of 68.2% and 47.0%. There is a a big gap between gold and system parse because the automatic parser failed

to recognize many VP nodes in the extraction step. Thus, many AZP samples were not recognized for training and

evaluation which lead to a great decrease in performance. To gain additional insights into our model, we analyzed

its outputs. The model correctly identifies many AZP cases, however, it struggles to recognize some patterns

especially AZPs that are preceded by a verb in the first person. The errors can be attributed to the distribution of

the training data. Most training AZP data are headed by verbs in the third person, and the number of verbs in the

first and second persons is very small; thus, the model did not learn to classify many of these cases. A corpus that

include a larger distribution of such cases can help a model to learn them.

Settings 1: Gold Parse Settings 2: System Parse

R P F1 R P F1

Baseline 67.7 45.2 54.2 31.7 30.6 31.1

Our model (r=2) 60.0 78.9 68.2 38.6 60.1 47.0

Table 3: AZP identification results for Arabic. The highest score is in bold.

5.2 Chinese

We compare our approach with other proposals in Table 4. As we can see, our approach achieves the highest F1

scores of 69.1% and 68.7% with gold and system parse settings, outperforming all prior proposals. The F1-score

difference between our approach and the state-of-the-art approach is 4.7% with gold parse settings and 11.3% with

system parse. The F1-score difference of gold and system settings of our approach is relatively small (0.4%) because

the Berkeley parser annotated many VP nodes correctly. We analyzed the errors, and noticed many unidentified

AZPs are located at the beginning of their samples. These cases depend on previous sentences, and their information

might have not been encoded in the AZP input; thus, our model failed to identify them.

Settings 1: Gold Parse Settings 2: System Parse

R P F1 R P F1

(Chen and Ng, 2013) 50.6 55.1 52.8 30.8 34.4 32.5

(Chen and Ng, 2014) 72.4 42.3 53.4 42.3 26.8 32.8

(Chen and Ng, 2016) 75.1 50.1 60.1 43.7 30.7 36.1

(Chang et al., 2017) 63.5 65.3 64.4 57.2 55.7 56.4

(Kong et al., 2019) 70.1 59.4 64.3 60.2 40.2 48.2

Our model (r=10) 90.7 55.8 69.1 81.9 59.2 68.7

Table 4: AZP identification results for Chinese. The highest score is in bold.

5.3 Discussion

BERT representations work interestingly well on AZPs even though empty categories have not been considered

during the BERT’s pretraining. Recent works (Jawahar et al., 2019; Kovaleva et al., 2019; Goldberg, 2019; Clark

et al., 2019) have shown that BERT learns various linguistic information such as, syntactic roles, coreference

resolution, semantic relations and others. Our experimental results suggest that these information might be encoded

in AZP contexts which make them distinctive.

Current approaches for AZP identification evaluate under two settings: gold and system annotations because the

task depend highly on the annotation quality of parse trees. In our experiments, gold settings for both Arabic and

Chinese achieve outstanding results. In system parse, Chinese achieves results similar to its gold setting; however,

Arabic does not. The reason is that Berkeley Parser (Kitaev et al., 2018) fails to parse correctly Arabic sentences

which means many correct AZP locations are not detected in the extraction step. A sophisticated Arabic parser can

improve the overall performance for system-parse settings.

6 Conclusion

We proposed a BERT-based model for AZP identification. Our approach is multilingual, and we evaluate on

Arabic and Chinese portions of OntoNotes. The model is the first to deal with Arabic AZP identification and

the experiments demonstrated that our method surpasses the state-of-the-art on Chinese AZPs. In addition, our

experimental results show that BERT learn about anaphoric zero-pronouns through their surrounding context.
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