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Abstract

Computer-based systems for communication with humans are a cornerstone of AI research since
the 1950s. So far, the most effective way to assess the quality of the dialogues produced by these
systems is to use resource-intensive manual labor instead of automated means. In this work, we
investigate whether language models (LM) based on transformer neural networks can indicate the
quality of a conversation. In a general sense, language models are methods that learn to predict
one or more words based on an already given context. Due to their unsupervised nature, they are
candidates for efficient, automatic indication of dialogue quality. We demonstrate that human
evaluators have a positive correlation between the output of the language models and scores. We
also provide some insights into their behavior and inner-working in a conversational context.

1 Introduction

Lately, deep learning conversational systems have seen increasing interest from industry and academia
alike (Chen et al., 2017). These systems find usage in various contexts, starting from personal speech
assistants like Google Assistant through the ”chatbots” on instant messaging platforms like Facebook
Messenger, and finally, conversational services like LUIS1. Many of these applications serve the objective
of completing a specific function like purchasing a product or booking services (e.g., hotels, flights).
Nonetheless, these applications can still profit from open-domain dialogue skills like chit-chatting, which
would provide a more human-like interaction with users.

Presently, scientists and engineers working on computer-based conversational systems need human-
based evaluation to assess the quality and usability of their work (Dinan et al., 2019; Logacheva et al.,
2018; Yoshino et al., 2019). These evaluations are costly in terms of resources. Thus, the field of dialogue
systems could take advantage of an automated method for assessing conversations.

Seminal works in text summarization and machine translation have already proposed their field-
specific metrics for automated assessments - for the former ROUGE (Lin, 2004), and, for the latter,
BLEU (Papineni et al., 2002) and METEOR (Banerjee and Lavie, 2005). Dialogue system research (Rit-
ter et al., 2011; Serban et al., 2016; Yoshino et al., 2019) constantly uses these metrics. However, Liu
et al. show that these metrics based on word-overlap between prediction and references are not reliable
for evaluating the usefulness of dialogue systems (2016). Hence, the field should use more sophisticated
methods that consider the previous utterances of a conversation and its semantic meaning.

When human annotators evaluate a dialogue, they do not use an explicit reference or necessarily seek
word overlap between context and response (or the lack of it). Their assessment bases itself on experience
with the language and the implicit knowledge they have about it. The core principle of statistical language
models (LM) is to capture and reproduce these properties. LM have proven themselves invaluable in
state-of-the-art approaches in natural language processing, and natural language understanding (Peters
et al., 2018; Devlin et al., 2019; Radford et al., 2019; Yang et al., 2019).

This work is licensed under a Creative Commons Attribution 4.0 International License. License details:
http://creativecommons.org/licenses/by/4.0/.

1https://www.luis.ai/
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Thus, the main aim of this work2 is to investigate their usability as means for evaluating dialogues
since they do not need a reference or supervision. We demonstrate that there is a significant positive
correlation between the predictions of language models and human evaluation scores. Furthermore, we
provide insights into the inner-workings and behavior of language models in the dialogue context.

2 Related Work

In this section, we present earlier work that focuses on dialogue evaluation. Furthermore, we provide
a concise introduction to language model transformers and recent advances in this particular set of ap-
proaches.

2.1 Dialogue Evaluation

Lowe et al. present a cornerstone work in dialogue evaluation. (2017). They propose an automatic
dialogue evaluation model (ADEM) that employs a neural network approach that approximates human
judgment using scored dialogues together with the context, reference response, and one generated by
a dialogue system. Reference responses and human annotation scores are hard to obtain. That is, it is
challenging to employ the approach on large dialogue datasets. Another cornerstone is the work of Tao
et al. (2018), a Referenced metric, and Unreferenced metric Blended Evaluation Routine (RUBER). They
suggest a method consisting of two elements: The first one captures the resemblance between a generated
and reference response using word vector pooling. The second one uses a neural network to estimate the
relevance of a reply. The model is trained to distinguish whether an answer in a dialogue is the original
one or a random one from another conversation. A drawback of both approaches above is that they use
reference responses to derive a score. Furthermore, Sai et al. (Sai et al., 2019) demonstrate that machine
learning approaches for dialogue evaluation like ADEM are susceptible to adversarial attacks.

Other works focus on addressing the issue that there is more than one possible response for a given
dialogue context by considering multiple reference responses. For example, Galley et al. (2015) suggest
an augmented version of BLEU that uses synthetically generated responses. The algorithm in Sordoni
et al. (2015) operates similarly. Sugiyama et al (2019) develop a Support Vector Regression approach to
consider multiple references. Gupta et al. (2019) investigate a framework of dialogue-modeling methods
combined with a variety of metrics, where they evaluate dialogues using various references.

Zhang et al. (2020) propose BERTscore to calculate text similarity using contextual embeddings. Their
work can be used for evaluating text generation against a reference. Unfortunately, it offers no way to
evaluate dialogues without a specified ground truth. On another note, Kann et al. (2018) suggest a
sentence level fluency metric derived from the perplexity score of a language model given a sentence
without involving any references. Their results demonstrate significant positive correlations with human
annotators. Nedelchev et al. (2020) experiment with an anomaly detection approach where erroneous
dialogues are seen as anomalies.

2.2 Language Models

The first application of n-gram-based language models is recorded in the mid-1970s by two independent
works of Jelinek (1976) and Baker (1975). Given a sequence of tokens, T = {t1, ..., tN}, a forward
language model computes the probability of the sequence by modeling the probability of a token tK
(K ≤ N) which has a history up to the K-th token (Peters et al., 2018). Some of the initial neural
network models (Melis et al., 2017) use initially a context-independent vector representation for a token,
which all pass through one or more LSTM layers (Hochreiter and Schmidhuber, 1997). In the end, they
produce a context-dependent vector that serves as input to a softmax layer to predict the next token. In a
reversed fashion, backward LM use the context to the right of the target token to predict it. In contrast,
bi-directional language models use a combination of both to predict the target word.

Radford et al. (2019) propose generative pre-training (GPT2), where they use the transformer (Vaswani
et al., 2017) as a forward language model, due to its superiority in terms of long-term memory when

2Code and resources to reproduce the results are available on the following link:
https://github.com/SmartDataAnalytics/transformers_dialogue_evaluators
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contrasted to recurrent neural networks like LSTMs.
Furthermore, Devlin et al. (2019) suggest an innovative way to train language models, also utilizing

transformers, specifically Bidirectional Encoder Representations from Transformers (BERT). They in-
vent the masked language model (MLM) where a random subset of tokens from a sequence is masked
or replaced, which the model then predicts by using the remaining original context. Furthermore, BERT
uses an additional LM objective: next sentence prediction (NSP). It works by teaching a model to recog-
nize whether two sentences appear sequentially in a corpus or not.

Yet another innovative transformer-based language model is XLNet by Yang et al (2019). It com-
bines the best features of a generative LM like GPT2 and a masked LM like BERT by proposing to
use the permutations of all factorization orders of a sequence to train. Thanks to it, XLNet learns to
utilize knowledge from both sides of the target token, but also the respective context of other positions.
Golovanov et al. (2019) demonstrate that pre-trained transformer language models provide benefits for
conversational agents.

For completeness, we mention other language models below that utilize transformers but are not inte-
gral to this work. We do not employ them in this work because the architectures discussed above already
supersede them, or we deem their additions as not adequate for modeling dialogues.

Dai et al. (2019) propose Transformer-XL, a new approach that allows transformers to model even
longer sequences by caching and reusing intermediate hidden states. XLNet also utilizes the method in its
implementation. Cross-lingual Language Model, by Lample and Conneau (2019), introduces Translation
Language Modeling, i.e., randomly masks words in parallel sequences in two languages to teach the
model leveraging multi-lingual context. Liu et al. (2019) present Robustly optimized BERT, by just
dropping BERTs next sentence prediction and a few other modifications in training. Raffel et al. (2019)
introduce the Text-to-Text Transfer Transformer, where the language-modeling objective is using a text-
to-text perspective. Conditional Transformer Language model, by Keskar et al. (2019), incorporates
conditioning on control codes to guide the generation of tokens.

Besides capturing syntax, LM are also capable to model semantics of sentences. The results of Ten-
ney et al. (Tenney et al., 2019) suggest that contextual word embeddings can encode both syntax and
semantics on a sub-sentence level. Furthermore, Zhou et al. (Zhou et al., 2019) conduct a systematic
benchmark to evaluate seven LM for their commonsense knowledge and reasoning. Their work suggests
that they have a certain degree of those abilities. Commonsense is what would also help for evaluating
open-domain dialogues.

3 Methodology

In this section, we report on the used datasets for assessing the usability of transformer language mod-
els for evaluating dialogue quality, introduce the used approaches in greater detail and describe their
relevance to the task at hand.

3.1 Datasets

We use the data gathered during the ConvAI13 (Burtsev et al., 2018; Logacheva et al., 2018) and Con-
vAI24 (Zhang et al., 2018; Dinan et al., 2019) challenges. The organizers invited competitors to develop
dialogue systems that had to address specific tasks. For ConvAI1, the participating systems needed to be
able to converse about a topic. In the other competition, the chatbots had to engage in a small-talk while
impersonating a pre-defined personality profile (”persona”). In both cases, human annotators evaluated
the capability of the dialogue systems to converse by interacting with them and giving a score at the end.
For both competitions, the scoring is on dialogue level. In Table 1 and in Figure 1, we present some
additional details about the data. However, we do not evaluate the two challenges specifically (topic
discussion and role acting). Instead, we aim at general open-domain dialogue evaluation, which implies
relevance, coherence, and fluency of the utterances.

3http://convai.io/2017/data/
4http://convai.io/data/
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Figure 1: Kernal density estimation of the distri-
bution of annotator scores of the dialogues in Con-
vAI1 and ConvAI2. We see that the majority of
dialogues are evaluated as low quality.

Feature ConvAI1 ConvAI2

# Dialogues 2154 2237
Avg # Utterances 13.9 18.1
Avg # Words
per Utterance

7.3 8.2

Task
Topic
discussion

Role
acting

Table 1: Key features of the dialogue
datasets. Only dialogues with three or more
utterances were considered as part of this
work. From our point of view, a dialogue
with two turns cannot reflect the semantic
complexities of language.

3.2 Language Model Evaluators
In Section 2.2, we presented a concise introduction into transformer-based language models. In the
current subsection, we will provide more details about three of those architectures, and how we use
them for conducting this study. Our main goal is to use the LM to assign a probability to the utterances
in a conversation. We used HuggingFace’s Transformers5 (Wolf et al., 2019) for implementation and
pre-trained weights of transformer-based language models.

Since intuition dictates that responses are dependent on their preceding context, we condition the target
reply on its history to measure its relevance. Kann et al. (2018) showed how language models could serve
as good sentence-level fluency indicators. Thus, the calculated probability from the transformer-based
LM can serve as a combined score for fluency and coherency. The following LM are used in this work:

1.) As previously mentioned, BERT (Devlin et al., 2019) is using two language modeling objectives:
masked language modeling (MLM) and next sentence prediction. MLM provides no viable way for
computing the probability of a target response because it originally substitutes only a random subset of
tokens. Thus, there is no consistent and deterministic way to use masked language modeling for assigning
a probability score to a response given its context. However, BERT’s next sentence prediction is an
excellent approach for the current task. It can judge if an utterance is the next one given its contextual
predecessor. Thus, we pair up the sequentially appearing sequences in a conversation and compute a
probability score for the second reply:

P (u2|u1) = P (t21, t22, ..., t2n|t11, t12, ..., t1m) (1)

,
where P (u2|u1) is the probability score of the target response, while (t11, t12, ..., t1m) and

(t21, t22, ..., t2n) are the tokens belonging to the query and response utterances prospectively.
2.) The approach of GPT2 (Radford et al., 2019) is the standard language model approach that factor-

izes the joint probability over the sequence tokens (t1, t2, ..., tn) as a product of the conditional proba-
bilities (Peters et al., 2018):

P (x) =

i∏
i=1

P (tn|t1, t2, ..., ti−1) (2)

In our problem domain, we need to consider two consecutive sequences and capture the coherence
between them. Thus, we concatenate them into one, where the context appears first and is then followed
by the second utterance. We then compute the joint probability for the second part conditioned on the
past:

5https://github.com/huggingface/transformers
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P (x) =

m+n∏
i=m+1

P (tm+n|ti, tn+1, ..., tm+n−1) (3)

where m is the length of the context, and n is the length of the target utterance.
3.) XLNet (Yang et al., 2019) follows the same general language model approach as GPT2, however,

with some additions to its training objective and neural network architecture. First of all, unlike GPT2,
XLNet optimizes the model over a sequence w.r.t. all possible permutations of the factorization orders
rather than each one separately. Secondly, compared to conventional neural transformers, XLNet adds
one more attention stream that includes the positional information of the target token but excluding the
content to maintain the autoregressive properties. To compute probabilities for the utterances, we follow
the same procedure as described above for GPT2.

In this work, we use a set of hyper-parameter configurations for each of the three language models.
We present them in Table 2.

Name Details

bert-base-uncased 12-layer, 768-hidden, 12-heads BooksCorpus English Wikipedia
bert-large-uncased 24-layer, 1024-hidden, 16-heads BooksCorpus & English Wikipedia
gpt2 12-layer, 768-hidden, 12-heads news, Wikipedia, fiction books
gpt2-medium 24-layer, 1024-hidden, 16-heads news, Wikipedia, fiction books
gpt2-large 36-layer, 1280-hidden, 20-heads news, Wikipedia, fiction books
xlnet-base-cased 12-layer, 768-hidden, 12-heads same as BERT + news
xlnet-large-cased 24-layer, 1024-hidden, 16-heads same as BERT + news

Table 2: Hyper-parameter configurations (number of layers, size of the hidden state, number of attention
heads) of the models and used corpora to pre-train them. Source: https://huggingface.co/
transformers/pretrained_models.html

3.3 Scoring
In Equations 2 and 3, we showed how language models compute a probability score for a whole sequence.
However, as an aggregated score over the tokens, it is losing the initial probabilistic distribution over
the tokens. Furthermore, since we are dealing with dialogues, i.e., a sequence of utterances, we need
to perform two levels of aggregation. The first level is an aggregation of the word tokens within an
utterance, while the second is the done while aggregating over the utterances.

Thus, we investigate other possible ways to derive an aggregated score over the word tokens and over
the utterances within a dialogue. Besides a product of probabilities, we also look into a sum and an
unweighted average, which capture the length of the sequences (utterance or dialogue), which might
prove beneficial for a correlation study with human annotators. We normalize all of the scores such that
they range between 0.0 (population minimum) and 1.0 (population maximum).

For GPT2 and XLNet, our experiments show that the following formulation correlates the highest with
human annotator scores:

lm dialog score =

Utterances∑
u=1

(∑Words
w=1 P(w=w)

#Words

)
(4)

We investigated other means to compute an aggregated score on the dialogue level. We present the
other results with low correlation coefficients and significance values in the appendix.

3.4 Baseline
We take RUBER from Tao et al (2018) as a baseline. The approach initially employs two components
that perform two functions. The first one is to calculate a resemblance score using word vector pooling
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and references. We aim for an unreferenced evaluation approach akin to a human evaluator. Thus, we
use only the second component of the method. This second component can calculate a relevance score
for a given response based on its preceding context. It uses a bidirectional GRU network and negative
sampling. To reproduce as best as possible the original results of RUBER, we sample 1,449,218 pairs of
sequential utterances from the OpenSubtitles dataset (Lison and Tiedemann, 2016).

4 Evaluation

In this part of the paper, we will conduct a correlation analysis between the calculated probabilities
from the LM and the scores given to dialogues by human evaluators. We provide a closer look at some
auxiliary model outputs as well.

4.1 Quantitative Assessment

In Table 3, we report the noteworthy Pearson’s and Spearman’s correlation coefficients between the
aggregated probability scores and the evaluations of the dialogues.

The immediate observation of using language models as dialogue evaluators shows that there are gaps
in terms of performance between the three different approaches. Most evident is the difference between
BERT and the others. Its next sentence prediction objective explains this behavior. Unlike the other two,
BERT takes the most structured approach to modeling two sequences. It recognizes the two utterances
as separate and captures their information as a whole. Thus, when we compare it to GPT2 and XLNet, it
has the advantage of not needing score aggregation on utterance level, because it produces a probability
for the whole sentence rather than word for word.

Dataset ConvAI1 ConvAI2

r ρ r ρ

bert-nsp-d-sum 0.169 0.273 0.205 0.490
bert-large-nsp-d-sum 0.172 0.277 0.205 0.485

gpt2-u-avg-d-sum -0.027 0.068 0.152 0.323
gpt2-md-u-avg-d-sum -0.005 0.069 0.144 0.325
gpt2-lg-u-avg-d-sum -0.038 0.048 0.127 0.325

xlnet-u-avg-d-sum 0.068 0.157 0.206 0.435
xlnet-lg-u-avg-d-sum 0.087 0.169 0.225 0.437

RUBER-U 0.154 0.129 0.013 -0.005

Table 3: Pearson’s r, and Speaman’s ρ, correlation coefficients
on the two dialogue datasets’ human scores and various ag-
greggated scores from the language models. ”u-avg-d-sum”
stands for averaged probabilities on utterance level and then
summed up on conversation level. Most of the scores are with
a confidence of p <= 0.001. Exceptions are GPT2-medium
and GPT2 in ConvAI1 with 0.812 and 0.212 respectively, as
well as, RUBER-U for ConvAI2, both r and ρ, with 0.5309
and 0.8166, respectively.

Also, there is a smaller differ-
ence in performance between GPT and
XLNet. First of all, they share a
core foundation as autoregressive lan-
guage models, thus are more similar
to each other than BERT, which also
explains their overall behavioral sim-
ilarity. However, XLNet has a struc-
tural improvement in its architecture.
Unlike GPT2, it also encodes the po-
sitional information of the target to-
ken. Thus, similarly to BERT, it can
capture more information about a se-
quence and consequently have a better
correlation score.

Additionally, we investigate the ef-
fect of model size. The differ-
ence in correlation coefficients be-
tween the hyperparameter configura-
tions is marginal and, in one of the
cases, even non-existent. The most
evident example is the spectrum dis-
played by the three GPT2 settings. Ul-
timately, we can conclude that smaller
models perform similarly at a much
smaller energy cost.

In regards to score aggregation, all the approaches unanimously show that averaging on utterance level
and summing up the whole conversation is the most informative for dialogue evaluation. At the same
time, the using a product or an unweighted average produce correlation coefficients very close to zero
and with an extremely low significance (e.g., p− value ranging from 0.4 to 0.8). The behavior indicates
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that while utterance length is insignificant, the duration of the conversation strongly dictates its quality
score.

4.2 Qualitative Assessment

(a) ConvAI1 (b) ConvAI2

Figure 2: Regression plots showing the relation between quality score and utterance length in the Con-
vAI1 and ConvAI2 datasets. The shaded area around the line represents a confidence interval.

In Figures 2a and 2b, the regression models show the interaction between the annotator quality score
and the length of a conversation in ConvAI1 and ConvAI2, respectively. In both cases, the regression
shows a positive trend that the longer a dialog is, the better its assessment is. We also see that in the
case of ConvAI1, the confidence area is much wider than in ConvAI2. This behavior further supports
the results in Table 3, where the language models have considerably lower correlation coefficients for
ConvAI1.

Furthermore, we manually investigated short conversations from both datasets that also have low qual-
ity. Many of the short dialogues show that the system would indeed perform poorly by not responding
at all, or the first couple of utterances would be not diverse or even the same. Thus, the annotator would
terminate the session and evaluate the dialogue with a low score. In contrast, conversations that were
more interactive and had longer duration also performed better in their assessment.

Original Context Original Response
(as in dataset)

Generated Response
(generated by transformer)

”Wow! Are you man or woman?” ”I am! i am a woman.” ” ’m a I am a man! I”
”How nice! Do you have a
boyfriend?”

”I do not. i am a single mom.” ” ’m . . I am a virgin woman. i”

”What do you mean?”
”granted the right to accept
only one religion”

”anted, fact to be or the of”

”Do you know Utrecht?”
”granted the right to
accept only one religion”

”ind, title to use donations
Dutch application”

Table 4: Sample dialogue exchanges as originally seen in the ConvAI1 and ConvAI2 datasets together
with alternative responses generated by GPT2 by just taking the most likely word. Coherent examples
induces the language models to generate also good response. The top two examples have high human
annotator scores, while the bottom two are rated lowly.
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4.3 What Would a Language Model Say?

In this subsection, we report the correlation scores between the maximum probabilities for each token
and the annotator scores. The intuition is that besides being renown for advancing the state-of-the-art
in various NLP benchmarks, language models are prominent for being capable generators of natural
language. Furthermore, Hendrycks and Gimpel (2017) have demonstrated that the maximum class prob-
ability of a neural network classifier tends to output lower values for samples that are out of distribution.
Thus, we set to investigate whether the predicted maximum classes of language models can also indicate
the quality of dialogues.

Although there are some studies (Wang et al., 2019) demonstrating BERT generating text, we will not
consider it in this part of the work due to the nature of its masked language modeling, which does not
aim at generating text. Considering GPT2 and XLNet, we look into what are the most likely words they
predict for each token of the sequence instead of the original ones.

For the context of dialogue evaluation, it means that on averagemax scores should be higher for fluent
and coherent text like the one used for pretraining the language models. At the same time, erroneous
samples should have lower maximum probabilities.

Firstly, we investigate the quantitative relation of themax scores to human annotator scores. Similarly
to what we did in Section 4.1, we have calculated the aggregated probability scores for the most likely
words according to the language models:

lm dialog scoremax =
Utterances∑

u=1

(∑Words
w=1 P(w=wmax)

#Words

)
(5)

Dataset ConvAI1 ConvAI2

r ρ r ρ

gpt2-u-avg-d-sum 0.133 0.261 0.193 0.477
gpt2-md-u-avg-d-sum 0.144 0.263 0.196 0.476
gpt2-lg-u-avg-d-sum 0.146 0.267 0.196 0.477

xlnet-u-avg-d-sum 0.157 0.263 0.211 0.471
xlnet-lg-u-avg-d-sum 0.137 0.251 0.209 0.475

Table 5: Pearson’s correlation coefficients, r, and Spea-
man’s correlation coefficients, ρ, on the two dialogue
datasets’ human scores and various aggregated scores for
the max word instead of the target. ”u-avg-d-sum” stands
for averaged probabilities on utterance level and then
summed up on conversation level. All of the scores are
with a confidence of p <= 0.001.

We present the results in Table 5. When
compared to the analogous results in Ta-
ble 3, we see that GPT2 and XLNet
demonstrate noticeably higher correlation
coefficients, especially for the dialogues
in the ConvAI1 dataset. This discrep-
ancy suggests that for some of the cases,
the models can generate text that would
fit better into the conversation. Since,
ConvAI1 and ConvAI2 happened before
the introduction of transformer-based lan-
guage models, it is save to assume that the
participating systems are inferior.

In Table 4, we present some short sam-
ple conversations together with a gener-
ated text by a language model. The top
two examples have high scores by the hu-
man annotators, while the rest are of low
quality. The model can reconstruct sensi-

ble responses that make sense and are still different from the original reply. On the other hand, whenever
there is an incoherent conversation like the third and fourth examples, GPT2 and XLNet are not able to
recreate a response that is either somewhat fluent or related to the current context. Another peculiarity is
that the language model possesses in a sense, common knowledge. This is demonstrated by the fourth
example, while in the preceding utterance, we see Utrecht, a Dutch city, and the model is then induced
to predict ”Dutch” as one of the response tokens.

5 Conclusion

In this study, we investigated whether transformer-based language models can evaluate dialogues in
terms of coherency and fluency. Overall, Pearson’s and Spearman’s correlation coefficients demonstrate
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that BERT, GPT2, and XLNet can indicate a conversation’s quality without any additional supervision or
reference. While, in their core, the three use the same approach, transformers, they have further structural
modifications that set them apart when considered for the current problem domain.

GPT2 performs worst due to its standard language modeling approach that incorporates the least struc-
tural information about a sequence. XLNet achieves an inmprovement in terms of its correlation score
by taking advantage of additional positional information when predicting a target token. Finally, BERT’s
next sentence prediction approach delivered the highest performance thanks to its structured approach in
regards to separate utterances.

While LM-based dialogue evaluators cannot yet replace human annotators, they have additional value
when compared to word-over metrics like BLUE or ones that use word-embeddings. Although they can-
not completely replace human evaluators, They can support as weak indicators for quality. Additionally,
we have shown that they can perform better than competing approaches like the unreferenced component
of RUBER.

Furthermore, the autoregressive language models, GPT2 and XLNet, demonstrate an excellent initial
aptitude for conducting dialogues. They can provide alternative responses that are also coherent with the
context of a discussion.

The LM-based method in this work considers dialogues as a series paired up utterances or question-
answers rather than one whole sequence. As future work, we will investigate how to extend the procedure
so that it is more adept at capturing long-term information over the entire conversation.
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A Equations for Aggregating Scores on Dialogue Level

In this section, we list the different aggregation measures that we experimented with. The correlation
coefficients between these aggregations scores and the human annotation are either of low values, are
insignificant (low p-value), or both.

lm dialog score =
Utterances∑

u=1

(
Words∑
w=1

P(w=w)

)
(6)

lm dialog score =
1

#Utterances

Utterances∑
u=1

(∑Words
w=1 P(w=w)

#Words

)
(7)

lm dialog score =
1

#Utterances

Utterances∑
u=1

(
Words∑
w=1

P(w=w)

)
(8)

lm dialog score =
Utterances∏

u=1

(
Words∑
w=1

P(w=w)

)
(9)

lm dialog score =
Utterances∏

u=1

(∑Words
w=1 P(w=w)

#Words

)
(10)

lm dialog score =
Utterances∏

u=1

(
Words∏
w=1

P(w=w)

)
(11)


