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Abstract

In automatic post-editing (APE) it makes sense to condition post-editing (pe) decisions on both
the source (src) and the machine translated text (mt) as input. This has led to multi-encoder
based neural APE approaches. A research challenge now is the search for architectures that best
support the capture, preparation and provision of src and mt information and its integration
with pe decisions. In this paper we present an efficient multi-encoder based APE model, called
transference. Unlike previous approaches, it (i) uses a transformer encoder block for src, (ii)
followed by a decoder block, but without masking for self-attention on mt, which effectively acts
as second encoder combining src → mt, and (iii) feeds this representation into a final decoder
block generating pe. Our model outperforms the best performing systems by 1 BLEU point
on the WMT 2016, 2017, and 2018 English–German APE shared tasks (PBSMT and NMT).
Furthermore, the results of our model on the WMT 2019 APE task using NMT data shows
performance at the level of the state-of-the-art. The inference time of our model is similar to the
vanilla transformer-based NMT system although our model deals with two separate encoders.
We further investigate the importance of our newly introduced second encoder and find that
decreasing the number of layers hurts performance, while reducing the number of layers of the
decoder does not matter much.

1 Introduction

Although machine translation (MT) systems are improving rapidly, the resulting translations may still
require manual post-editing (PE) to achieve human-acceptable translation. Automatic post-editing (APE)
is a method that aims to automatically correct errors in machine translated text before performing actual
human post-editing (PE) (Knight and Chander, 1994), thereby reducing the post-editors’ workload and
increasing productivity (Pal et al., 2016a). APE systems learned from human PE data serve as down-
stream MT post-processing modules to improve the overall performance. APE can therefore be viewed
as a 2nd-stage MT system, translating predictable error patterns in MT output to their corresponding
corrections. APE training data minimally involves MT output (mt) and the human post-edited (pe)
version of mt, but additionally using the source (src) has been shown to provide further benefits (Bojar
et al., 2015; Bojar et al., 2016; Bojar et al., 2017).

To provide awareness of errors in mt originating from src, attention mechanisms (Bahdanau et al.,
2015) allow modeling of non-local dependencies in the input or output sequences, and importantly also
global dependencies between them (in our case src, mt and pe). The transformer architecture (Vaswani
et al., 2017) is built solely upon such attention mechanisms completely replacing recurrence and con-
volutions. The transformer uses positional encoding to encode the input and output sequences, and
computes both self- and cross-attention through so-called multi-head attentions, which can be easily par-
allelized. Multi-head attention allows to jointly attend to information at different positions from different
representation subspaces, e.g. utilizing and combining information from src, mt, and pe.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.
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In this paper, we present a multi-encoder based neural APE architecture called transference. Our
model contains a source encoder which encodes src information, a second encoder (encsrc→mt) which
takes the encoded representation from the source encoder (encsrc), combines this with the self-attention-
based encoding of mt (encmt), and prepares a representation for the decoder (decpe) via cross-attention.
Our second encoder (encsrc→mt) can also be viewed as a standard transformer decoding block, however,
without masking, which acts as an encoder. We thus recombine the different blocks of the transformer
architecture and repurpose them for the APE task in a simple yet effective way. The suggested architec-
ture is inspired by the two-step approach professional translators tend to use during post-editing: first, the
source segment is compared to the corresponding translation suggestion (similar to what our encsrc→mt

is doing), then corrections to the MT output are applied based on the encountered errors (in the same
way that our decpe uses the encoded representation of encsrc→mt to produce the final translation).

The paper makes the following contributions: (i) we propose a multi-encoder model for APE that
consists only of standard transformer encoding and decoding blocks, (ii) by using a mix of self- and
cross-attention we provide a representation of both src and mt for the decoder, allowing it to better
capture errors in mt originating from src; this advances Junczys-Dowmunt and Grundkiewicz (2018)
– the WMT 2018 best system (wmt18smt

best) in terms of BLEU and TER, (iii), we analyze the effect
of varying the number of encoder and decoder layers (Domhan, 2018), indicating that the encoders
contribute more than decoders in neural APE, and (iv) we present and evaluate an APE architecture
inspired by a two-step approach professional translators often use during post-editing.

In comparison to the shared task system description paper (Pal et al., 2019), this paper (i) provides
more detailed explanations and reformation of different components of the transference architecture, (ii)
compares it to a single encoder based transformer architecture where only mt or src concatenated with
mt are used as an input, (iii) analyzes results when swapping mt and src in the multi-encoder setup, and
(iv) investigates the importance of encoder and decoder by varying the amount of layers.

The rest of the paper is organized as follows. In §2, we survey existing literature on APE. In §3, we
describe the multi-encoder architecture. §4 describes our experimental setup. §5 reports the results of
our approach against a number of baselines. Finally, §6 concludes the paper with future directions.

2 Related Research

Recent advances in APE research are directed towards neural APE, which was first proposed by Pal et
al. (2016b) and Junczys-Dowmunt and Grundkiewicz (2016) for the single-source APE scenario which
does not consider src, i.e. mt→ pe. Junczys-Dowmunt and Grundkiewicz (2016) also generated a large
synthetic training dataset, which we also use as additional training data.

Exploiting source information as an additional input can help neural APE to disambiguate corrections
applied at each time step; this naturally leads to multi-source APE ({src,mt} → pe). A multi-source
neural APE system can be configured either by using a single encoder that encodes the concatenation
of src and mt (Niehues et al., 2016) or by using two separate encoders for src and mt and passing the
concatenation of both encoders’ final states to the decoder (Libovický et al., 2016). A few approaches
to multi-source neural APE were proposed in the WMT 2017 APE shared task. Junczys-Dowmunt
and Grundkiewicz (2017) combine both mt and src in a single neural architecture, exploring different
combinations of attention mechanisms including soft attention and hard monotonic attention. Chatterjee
et al. (2017) built upon the two-encoder architecture of multi-source models (Libovický et al., 2016) by
means of concatenating both weighted contexts of encoded src and mt. Varis and Bojar (2017) compared
two multi-source models, one using a single encoder with the concatenation of src and mt sentences,
and a second one using two character-level encoders for mt and src along with a character-level decoder.

In the WMT 2018 APE shared task, several adaptations of the transformer architecture were presented
for multi-source APE. Pal et al. (2018) introduced a joint encoder that attends over a combination of
the two encoded sequences from mt and src. Tebbifakhr et al. (2018), the NMT-subtask winner of
WMT 2018 (wmt18nmt

best ), employed sequence-level loss functions in order to avoid exposure bias during
training and to be consistent with the automatic evaluation metrics. Shin and Lee (2018) proposed a
multi-source transformer where on the decoder side, they added two additional multi-head attention
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layers for src→ mt and src→ pe. Thereafter another multi-head attention between the output of those
attention layers helps the decoder to capture common words in mt which should remain in pe. The APE
PBSMT-subtask winner of WMT 2018 (wmt18smt

best) (Junczys-Dowmunt and Grundkiewicz, 2018) also
presented another transformer-based multi-source APE which uses two encoders and stacks an additional
cross-attention component for src→ pe above the previous cross-attention for mt→ pe.

In contrast to other multi-encoder based approaches and Libovický et al. (2018)’s approach, where the
authors focused on cross-attention of two encoders with respect to the decoder within the transformer
architecture, we propose a novel architecture where the second encoder block is similar to the transformer
decoder block but without masking.

In the latest edition of WMT (2019), the submissions are mostly multi-source models extending the
transformer implementation (Pal et al., 2019; Lee et al., 2019; Xu et al., 2019) and adapting BERT
(Devlin et al., 2018) to the transformer-based framework (Lopes et al., 2019). The winner system (Lopes
et al., 2019) (wmt19nmt

best ) uses a single pre-trained BERT encoder that receives both the source src and
mt strings and applies a BERT-based encoder-decoder model. Additionally, they add a conservativeness
penalty factor during beam decoding to avoid over-corrections in APE.

Our method outperforms the WMT 2016, 2017, and 2018 winners by 1 BLEU point, and yields
comparable performance to the WMT 2019 winner, however, without using a BERT-based architecture.

3 The Transference Multi-Encoder Transformer for APE

We propose a multi-source transformer model called transference ({src,mt}tr → pe, Figure 1), which
takes advantage of both the encodings of src and mt and attends over a combination of both sequences
while generating the post-edited sentence. The second encoder, encsrc→mt, makes use of the first encoder
encsrc and a sub-encoder encmt for considering src and mt. Here, the encsrc encoder and the decpe
decoder are equivalent to the original transformer for neural MT (Vaswani et al., 2017). Our encsrc→mt

follows an architecture similar to the transformer’s decoder, the difference being that multihead self-
attention is not masked to process mt.

The self-attended encoder for src, s = (s1, s2, . . . , sk), returns a sequence of continuous representa-
tions, encsrc, and the second self-attended sub-encoder for mt, m = (m1,m2, . . . ,ml), returns another
sequence of continuous representations, encmt. Self-attention at this point provides the advantage of
aggregating information from all of the words, including src and mt, and successively generates a new
representation per word informed by the entire src and mt context. To do this the internal encmt rep-
resentation performs cross-attention over encsrc and prepares a final representation (encsrc→mt) for the
decoder (decpe). The decoder then generates the pe output in sequence, p = (p1, p2, . . . , pn), one word
at a time from left to right by attending to previously generated words as well as the final representations
(encsrc→mt) generated by the encoder.

To summarize, our multi-source APE implementation extends Vaswani et al. (2017) by introducing an
additional encoding block by which src and mt communicate with the decoder.

Our proposed approach differs from the WMT 2018 PBSMT winner system (wmt18smt
best) in several

ways: (i) we use the original transformer’s decoder without modifications; (ii) one of our encoder blocks
(encsrc→mt) is identical to the transformer’s decoder block but uses no masking in the self-attention
layer, thus having one self-attention layer and an additional cross-attention for src → mt; and (iii) in
the decoder layer, the cross-attention is performed between the encoded representation from encsrc→mt

and pe. Moreover, placing a cross-attention network within the encsrc→mt sub-layer rather than the
decpe sub-layer as in wmt18smt

best, during inference, encsrc→mt is forward propagated only once instead
of multiple times i.e., once per decoding step.

Our approach also differs from the WMT 2018 NMT winner system: (i) wmt18nmt
best concatenates the

encoded representation of two encoders and passes it as the key to the attention layer of the decoder,
and (ii), the system additionally employs sequence-level loss functions based on maximum likelihood
estimation and minimum risk training in order to avoid exposure bias during training.

Comparing with wmt19nmt
best , the winner system of WMT 2019 uses a pre-trained deep bidirectional

transformer (multilingual BERT) (Devlin et al., 2018), while our model does not.
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The main intuition is that our encsrc→mt attends over the src and mt and informs the pe to better
capture, process, and share information between src-mt-pe, which efficiently models error patterns and
the corresponding corrections. Our model performs better than past transformer-based approaches and
similar to the BERT-based approach (wmt19nmt

best ) without adding the overhead of the pre-trained model,
as the experiment section will show.

Figure 1: The transference model architecture for APE ({src,mt}tr → pe).

4 Experiments

We explore our approach on both APE sub-tasks of WMT 2018, where the black box MT (we refer as
1st-stage MT) system to which APE is applied is either a phrase-based statistical machine translation
(PBSMT) or a neural machine translation (NMT) model.

For the PBSMT task, we compare against four baselines: the raw SMT output provided by the 1st-
stage PBSMT, the best-performing systems from WMT APE 2018 (wmt18smt

best), which are a single
model and an ensemble model by Junczys-Dowmunt and Grundkiewicz (2018), as well as a transformer
directly translating from src to pe (Transformer (src→ pe)), thus performing translation instead of
APE. We evaluate the systems using BLEU (Papineni et al., 2002) and TER (Snover et al., 2006).

For the NMT task, we consider three baselines: the raw NMT output provided by the 1st-stage NMT
system, the best-performing system from the WMT 2018 (wmt18nmt

best) (Tebbifakhr et al., 2018) and
WMT 2019 (wmt19nmt

best) (Lopes et al., 2019) NMT APE task.
Apart from the multi-encoder transference architecture described above ({src,mt}tr → pe) and

ensembling of this architecture, two simpler versions are also analyzed: first, a ‘mono-lingual’
(mt→ pe) APE model using only parallel mt–pe data and therefore only a single encoder, and sec-
ond, an identical single-encoder architecture, however, using the concatenated src and mt text as input
({src+mt} → pe) (Niehues et al., 2016).
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4.1 Data

For our experiments, we use the English–German WMT 2016 (Bojar et al., 2016), 2017 (Bojar et al.,
2017), 2018 (Chatterjee et al., 2018) and 2019 (Chatterjee et al., 2019) APE task data. All these released
APE datasets consist of English–German triplets containing source English text (src) from the IT do-
main, the corresponding German translations (mt) from a 1st-stage MT system, and the corresponding
human-post-edited version (pe). The sizes of the datasets (train; dev; test), in terms of number of sen-
tences, are (12,000; 1,000; 2,000), (11,000; 0; 2,000), and (13,442; 1,000; 1,023), for the 2016 PBSMT,
the 2017 PBSMT, and the 2018 NMT data, respectively. The 2019 version of the APE dataset released
in WMT is the same as the WMT 2018 NMT data. It is to be noted that for WMT 2018, we carried out
experiments only for the NMT sub-task and ignored the data for the PBSMT task.

Since the WMT APE datasets are small in size, we use ‘artificial training data’ (Junczys-Dowmunt
and Grundkiewicz, 2016) containing 4.5M sentences as additional resources, 4M of which are weakly
similar to the WMT 2016 training data, while 500K are very similar according to TER statistics.

For experimenting on the NMT data, we additionally use the synthetic eScape APE corpus (Negri et
al., 2018), consisting of ∼7M triples. For cleaning this noisy eScape dataset containing many unrelated
language words (e.g. Chinese), (i) we use the cleaning process described in Tebbifakhr et al. (2018), and
(ii) we use the Moses (Koehn et al., 2007) corpus cleaning scripts with minimum and maximum number
of tokens set to 1 and 100, respectively. After cleaning, we perform punctuation normalization, and then
use the Moses tokenizer (Koehn et al., 2007) to tokenize the eScape corpus with ‘no-escape’ option.
Finally, we apply true-casing. The cleaned version of the eScape corpus contains ∼6.5M triplets.

4.2 Experiment Setup

To build models for the PBSMT tasks from 2016 and 2017, we first train a generic APE model using
all the training data (4M + 500K + 12K + 11K) described in Section 4.1. Afterwards, we fine-tune the
trained model using the 500K artificial and 23K (12K + 11K) real PE training data. We use the WMT
2016 development data (dev2016) containing 1,000 triplets to validate the models during training. To
test our system performance, we use the WMT 2016 and 2017 test data (test2016, test2017) as two sub-
experiments, each containing 2,000 triplets (src, mt and pe). We compare the performance of our system
with the four different baseline systems described above: raw MT, wmt18smt

best single and ensemble, as
well as transformer (src→ pe).

Additionally, we check the performance of our model on the WMT 2018 NMT APE task (where unlike
in previous tasks, the 1st-stage MT system is provided by NMT): for this, we explore two experimental
setups: (i) we use the PBSMT task’s APE model as a generic model which is then fine-tuned to a
subset (12k) of the NMT data ({src,mt}nmt

tr → pegeneric,smt). One should note that it has been argued
that the inclusion of SMT-specific data could be harmful when training NMT APE models (Junczys-
Dowmunt and Grundkiewicz, 2018). (ii), we train a completely new generic model on the cleaned
eScape data (∼6.5M) along with a subset (12K) of the original training data released for the NMT
task ({src,mt}nmt

tr → pegeneric,nmt). The aforementioned 12K NMT data are the first 12K of the
overall 13.4K NMT data. The remaining 1.4K are used as validation data. The released development set
(dev2018) is used as test data for our experiment, alongside the test2018, for which we could only obtain
results for a few models by the WMT 2019 task organizers. We also explore an additional fine-tuning
step of {src,mt}nmt

tr → pegeneric,nmt towards the 12K NMT data (called {src,mt}nmt
tr → peft), and a

model averaging the 8 best checkpoints of {src,mt}nmt
tr → peft, which we call {src,mt}nmt

tr → peftavg.
During post-editing, professional translators have to understand the source, and analyze if the MT

correctly represents the source, which corresponds to our encsrc and encsrc→mt. To investigate whether
following this realistic understanding of the post-editing process is beneficial, we compare the model to a
version with swapped inputs (mt, src), called {mt, src}smt

tr → pegeneric. We carried out an experiment
with the PBSMT task’s APE dataset. Moreover, we fine-tune the {mt, src}smt

tr → pegeneric model with
500K artificial and 23K real PE training data and compare the fine-tuned model ({mt, src}smt

tr → peft)
with {src,mt}smt

tr → peft.
Last, we analyze the importance of our second encoder (encsrc→mt), compared to the source encoder
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(encsrc) and the decoder (decpe), by reducing and expanding the amount of layers in the encoders and
the decoder. Our standard setup, which we use for fine-tuning, ensembling etc., is fixed to 6-6-6 for
Nsrc-Nmt-Npe (cf. Figure 1). We investigate what happens in terms of APE performance if we change
this setting to 6-6-4 and 6-4-6.

To handle out-of-vocabulary words and reduce the vocabulary size, instead of considering words, we
consider subword units (Sennrich et al., 2016) by using byte-pair encoding (BPE). In the preprocessing
step, instead of learning an explicit mapping between BPEs in the src, mt and pe, we define BPE tokens
by jointly processing all triplets. Thus, src, mt and pe derive a single BPE vocabulary. Since mt and pe
belong to the same language (German) and src is a close language (English), they naturally share a good
fraction of BPE tokens, which reduces the vocabulary size to 28k. We implemented our approach based
on the Neutron implementation of the Transformer (Xu and Liu, 2019)1.

4.3 Hyper-parameter Setup

We follow a similar hyper-parameter setup for all reported systems. All encoders (for {src,mt}tr → pe),
and the decoder, are composed of a stack of Nsrc = Nmt = Npe = 6 identical layers (except for the
layer experiment) followed by layer normalization. The learning rate is varied throughout the training
process, and increasing for the first training steps warmupsteps = 8000 and afterwards decreasing as
described in Vaswani et al. (2017). All remaining hyper-parameters are set analogously to those of the
transformer’s base model. At training time, the batch size is set to 25K tokens, with a maximum sentence
length of 256 subwords. After each epoch, the training data is shuffled. During decoding, we perform
beam search with a beam size of 4. We use shared embeddings between mt and pe in all our experiments.

Exp.
no. Models test2016 test2017

BLEU ↑ TER ↓ BLEU ↑ TER ↓
Baselines
1.1 Raw SMT 62.11 24.76 62.49 24.48
1.2 Transformer (src → pe) 56.59 (-5.52) 29.97 (+5.21) 53.06 (-9.43) 32.20 (+7.72)
1.3 wmt18smt

best (single) 70.86 (+8.75) 18.92 (-5.84) 69.72 (+7.23) 19.49 (-4.99)
1.4 wmt18smt

best (x4) 71.04 (+8.93) 18.86 (-5.9) 70.46 (+7.97) 19.03 (-5.45)
Baselines: Retrained wmt18smt

best with our experimental setup
1.5 wmt18smt,generic

best (single) 69.14 (+7.03) 20.41 (-4.35) 68.14 (+5.65) 20.98 (-3.5)
1.6 wmt18smt,ft

best (single) 70.12 (+8.01) 19.84 (-4.92) 69.16 (+6.67) 20.34 (-4.14)
General models trained on 23K+4.5M data
2.1 mt → pe 67.70 (+5.59) 21.90 (-2.86) 66.91 (+4.42) 22.32 (-2.16)
2.2 {src+mt} → pe 69.32 (+7.21) 20.27 (-4.49) 68.26 (+5.77) 20.90 (-3.58)
2.3 {src,mt}smt

tr → pe 70.46 (+8.35) 19.21 (-5.55) 70.05 (+7.56) 19.46 (-5.02)
2.4 {mt, src}smt

tr → pe 70.26 (+8.15) 19.34 (-5.42) 69.34 (+6.85) 20.05 (-4.43)
Fine-tuning Exp. 2 models with 23K+500K data
3.1 mt → pe 68.43 (+6.32) 21.29 (-3.47) 67.78 (+5.29) 21.63 (-2.85)
3.2 {src+mt} → pe 69.87 (+7.76) 19.94 (-4.82) 68.57 (+6.08) 20.68 (-3.8)
3.3 {src,mt}smt

tr → peft 71.05 (+8.94) 19.05 (-5.71) 70.33 (+7.84) 19.23 (-5.25)
3.4 {mt, src}smt

tr → peft 70.26 (+8.15) 19.40 (-5.36) 69.31 (+6.82) 19.91 (-4.57)
4.1 Exp3.3smt

ens4ckpt 71.59 (+9.48) 18.78 (-5.98) 70.89 (+8.4) 18.91 (-5.57)
4.2 ensemblesmt(x3) 72.19 (+10.08) 18.39 (-6.37) 71.58 (+9.09) 18.58 (-5.90)
{src,mt}smt

tr → pe with different layer size
5.1 {src,mt}smt

tr → pe (6-6-4) 70.85 (+8.74) 19.00 (-5.76) 69.82 (+7.33) 19.67 (-4.81)
5.2 {src,mt}smt

tr → pe (6-4-6) 69.93 (+7.82) 19.70 (-5.06) 69.61 (+7.12) 19.68 (-4.8)

Table 1: Evaluation results on the WMT APE test set 2016, and test set 2017 for the PBSMT task; (±X)
value is the improvement over Raw SMT. The last section of the table shows the impact of increasing
and decreasing the depth of the encoders and the decoder. Our transference model is 1.07 times faster
than the dual source model (wmt18smt

best) for post-editing the testset of 2000 sentences.
.

1https://github.com/anoidgit/transformer.
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5 Results

The results of our four models, single-source (mt→ pe), multi-source single encoder
({src+ pe} → pe), transference model ({src,mt}smt

tr → pe, {mt, src}smt
tr → pe), and ensemble,

in comparison to the four baselines, raw SMT, wmt18smt
best (Junczys-Dowmunt and Grundkiewicz,

2018) single and ensemble, as well as Transformer (src→ pe), are presented in Table 1 for test2016
and test2017. Table 2 reports the results obtained by our transference model ({src,mt}nmt

tr → pe)
on the WMT 2018, 2019 NMT data for dev2018 (which we use as a test set) and test2018/2019 (when
testset was available), compared to the baselines raw NMT, wmt18nmt

best, and wmt19nmt
best.

5.1 Baselines

The raw SMT output in Table 1 is a strong black-box PBSMT system (i.e., 1st-stage MT). We report
its performance observed with respect to the ground truth (pe), i.e., the post-edited version of mt. The
original PBSMT system scores over 62 BLEU points and below 25 TER on test2016 and test2017.

Using a Transformer (src → pe), we test if APE is really useful, or if potential gains are only
achieved due to the good performance of the transformer architecture. While we cannot do a full training
of the transformer on the data that the raw MT engine was trained on due to the unavailability of the data,
we use our PE datasets in an equivalent experimental setup as for all other models. The results of this
system (Exp. 1.2 in Table 1) show that the performance is actually lower across both test sets, -5.52/-9.43
absolute points in BLEU and +5.21/+7.72 absolute in TER, compared to the raw SMT baseline.

We report four results from wmt18smt
best, (i) wmt18smt

best (single), which is the core multi-encoder
implementation without ensembling but with checkpoint averaging, (ii) wmt18smt

best (x4) which is an
ensemble of four identical ‘single’ models trained with different random initializations. The results
of wmt18smt

best (single) and wmt18smt
best (x4) (Exp. 1.3 and 1.4) reported in Table 1 are from Junczys-

Dowmunt and Grundkiewicz (2018). Since their training procedure slightly differs from ours, we also
trained the wmt18smt

best system using exactly our experimental setup in order to make a fair compari-
son. This yields the baselines (iii) wmt18smt,generic

best (single) (Exp. 1.5), which is similar to wmt18smt
best

(single), however, the training parameters and data are kept in line with our transference general model
(Exp. 2.3) and (iv) wmt18smt,ft

best (single) (Exp. 1.6), which is also trained maintaining the equivalent
experimental setup compared to the fine tuned version of the transference general model (Exp. 3.3).
Compared to both raw SMT and transformer (src → pe) we see strong improvements for this state-of-
the-art model, with BLEU scores of at least 68.14 and TER scores of at most 20.98 across the PBSMT
testsets. wmt18smt

best, however, performs better in its original setup (Exp. 1.3 and 1.4) compared to our
experimental setup (Exp. 1.5 and 1.6).

The results on the WMT 2018 and 2019 NMT datasets (dev2018 and test2018) are presented in Ta-
ble 2. The raw NMT system serves as one baseline against which we compare the performance of the
different models. We evaluate the system hypotheses with respect to the ground truth (pe), i.e., the post-
edited version of mt. The baseline original NMT system scores 76.76 BLEU points and 15.08 TER on
dev2018, and 74.73 BLEU points and 16.80 TER on test2018.

5.2 Single-Encoder Transformer for APE

The two transformer architectures mt→ pe and {src+mt} → pe use only a single encoder. Table
1 shows that mt→ pe (Exp. 2.1) provides better performance (+4.42 absolute BLEU on test2017)
compared to the original SMT, while {src+mt} → pe (Exp. 2.2) provides further improvements by
additionally using the src information. {src+mt} → pe improves over mt→ pe by +1.62/+1.35
absolute BLEU points on test2016/test2017. After fine-tuning, both single encoder transformers (Exp.
3.1 and 3.2 in Table 1) show further improvements, +0.87 and +0.31 absolute BLEU points, respectively,
for test2017 and a similar improvement for test2016.

5.3 Transference Transformer for APE

In contrast to the two models above, our transference architecture uses multiple encoders. The fine-
tuned version of the {src,mt}smt

tr → pe model (Exp. 3.3 in Table 1) outperforms wmt18smt
best (single)
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(Exp. 1.3) in BLEU on both test sets, however, the TER score for test2016 increases. When ensem-
bling the 4 best checkpoints of our {src,mt}smt

tr → pe model (Exp. 4.1), the result beats the wmt18smt
best

(x4) system, which is an ensemble of four different randomly initialized wmt18smt
best (single) systems.

Our ensemblesmt(x3) combines two {src,mt}smt
tr → pe (Exp. 2.3) models initialized with differ-

ent random weights with the ensemble of the fine-tuned transference model Exp3.3smt
ens4ckpt(Exp. 4.1).

This ensemble provides the best results for all datasets, providing roughly +1 BLEU point and -0.5
TER when comparing against wmt18smt

best (x4). In terms of the number of parameters, wmt18smt
best and

our {src,mt}smt
tr → pe model are the same. Moreover, our {src,mt}smt

tr → pe model uses a sin-
gle multi-head cross-attention in the decoder sub-layer, compared to two multi-head cross-attention
mechanisms in wmt18smt

best, therefore our model requires less inference time. Furthermore, using more
non-autoregressive encoder layers with fewer autoregressive decoder layers can significantly accelerate
the inference (Xu et al., 2020), instead of aggregating src and mt with the autoregressive pe decoder
(Junczys-Dowmunt and Grundkiewicz, 2018), our approach that aggregates src and mt with the non-
autoregressive mt encoder is significantly faster than the wmt18smt

best in inference, which is of practical
value.

Additionally we compare our {src,mt}smt
tr → pe model with {mt, src}smt

tr → pe, where we re-
verse the input order i.e., enc1 and enc2 take mt and src, respectively, as input. Exp. 2.4 and Exp.
3.4 report {mt, src}smt

tr → pe and {mt, src}smt
tr → peft respectively, which performed slightly

worse than {src,mt}smt
tr → pe and {src,mt}smt

tr → peft. Surprisingly, fine-tuning does not help
{mt, src}smt

tr → peft for the testset 2016, however, in case of testset 2017, fine-tuning shows small gain
in performance. Moreover, the performance gain in fine-tuning for the case of {src,mt}smt

tr → peft over
{src,mt}smt

tr → pe is considerably stronger than the performance gain for {mt, src}smt
tr → peft over

{mt, src}smt
tr → pe. Empirically, this manifests our hypothesis that our model ({src,mt}smt

tr → pe) fol-
lows human post-editors’ two-step approach: first, the source segment is compared to the corresponding
translation suggestion, then corrections to the MT output are applied based on the encountered errors.

Exp.
no. Models dev2018 test2018

BLEU ↑ TER ↓ BLEU ↑ TER ↓
6.1 Raw NMT 76.76 15.08 74.73 16.80
6.2 wmt18nmt

best 77.74 (+0.98) 14.78 (-0.30) 75.53 (+0.80) 16.46 (-0.34)
6.3 wmt19nmt

best - - 75.96 (+1.23) 16.06 (-0.74)
Fine-tuning Exp. 3.3 on 12k NMT data
7 {src,mt}nmt

tr → pegeneric,smt 77.09 (+0.33) 14.94 (-0.14) - -
Transference model trained on eScape+ 12k NMT data
8 {src,mt}nmt

tr → pegeneric,nmt 77.25 (+0.49) 14.87 (-0.21) - -
Fine-tuning model 8 on 12k NMT data
9 {src,mt}nmt

tr → peft 77.39 (+0.63) 14.71 (-0.37) - -
Averaging 8 checkpoints of Exp. 9
10 {src,mt}nmt

tr → peftavg 77.67 (+0.91) 14.52 (-0.56) 75.75 (+1.02) 16.15 (-0.69)

Table 2: Evaluation results on the WMT APE 2018 development set for the NMT task (Exp. 6 and Exp.
10 results were obtained by the WMT 2019 task organizers).(±X) value is the improvement over Raw
NMT.

For the WMT 2018 NMT data we first test our {src,mt}nmt
tr → pegeneric,smt model, which is the

model from Exp. 3.3 fine-tuned towards NMT data as described in Section 4.2. Table 2 shows that our
PBSMT APE model fine-tuned towards NMT (Exp. 7) can even slightly improve over the already very
strong NMT system by about +0.3 BLEU and -0.1 TER, although these improvements are not statistically
significant.

The overall results improve when we train our model on eScape and NMT data instead of using
the PBSMT model as a basis. Our proposed generic transference model (Exp. 8, {src,mt}nmt

tr →
pegeneric,nmt) shows statistically significant improvements in terms of BLEU and TER compared to the
baseline even before fine-tuning, and further improvements after fine-tuning (Exp. 9, {src,mt}nmt

tr →
peft). Finally, after averaging the 8 best checkpoints, our {src,mt}nmt

tr → peftavg model (Exp. 10) also
shows consistent improvements in comparison to the baseline and other experimental setups. Overall
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our fine-tuned model averaging the 8 best checkpoints achieves +1.02 absolute BLEU points and -0.69
absolute TER improvements over the baseline on test2018. Table 2 also shows the performance of our
model compared to the winner system of WMT 2018 (wmt18nmt

best ) for the NMT task (Tebbifakhr et al.,
2018). wmt18nmt

best scores 14.78 in TER and 77.74 in BLEU on the dev2018 and 16.46 in TER and 75.53
in BLEU on the test2018. In comparison to wmt18nmt

best , our model (Exp. 10) achieves better scores in
TER on both the dev2018 and test2018, however, in terms of BLEU our model scores slightly lower for
dev2018, while some improvements are achieved on test2018. Compared to wmt19nmt

best (Exp. 6.3), our
model scores slightly lower, however, the performance loss is not statistically significant. It is to be noted
that the training strategy in wmt19nmt

best is different – (i) they used their own synthetic corpus prepared
using the parallel data provided by the Quality Estimation shared task2, (ii) they oversampled the APE
training data 20 times, and (iii) they applied multilingual BERT.

The number of layers (Nsrc-Nmt-Npe) in all encoders and the decoder for these results is fixed to
6-6-6. In Exp. 5.1, and 5.2 in Table 1, we see the results of changing this setting to 6-6-4 and 6-4-6.
This can be compared to the results of Exp. 2.3, since no fine-tuning or ensembling was performed for
these three experiments. Exp. 5.1 shows that decreasing the number of layers on the decoder side does
not hurt the performance. In fact, in the case of test2016, we got some improvement, while for test2017,
the scores got slightly worse. In contrast, reducing the encsrc→mt encoder block’s depth (Exp. 5.2) does
indeed reduce the performance for all four scores, showing the importance of this second encoder.

5.4 Discussion

The proposed multi-encoder based transformer architecture ({src,mt}smt
tr → pe, Exp. 2.3) shows

slightly worse results than wmt18smt
best (single) (Exp. 1.3) before fine-tuning, and roughly similar re-

sults after fine-tuning (Exp. 3.3). After ensembling, however, our transference model (Exp. 4.2) shows
consistent improvements when comparing against the best baseline ensemble wmt18smt

best (x4) (Exp. 1.4).
Due to the unavailability of the sentence-level scores of wmt18smt

best (x4), we could not test if the improve-
ments (roughly +1 BLEU, -0.5 TER) are statistically significant. Interestingly, our approach of taking the
model optimized for PBSMT and fine-tuning it to the NMT task (Exp. 7) does not hurt the performance
as was reported in the previous literature (Junczys-Dowmunt and Grundkiewicz, 2018). In contrast,
some small, albeit statistically insignificant improvements over the raw NMT baseline were achieved.
When we train the transference architecture directly for the NMT task (Exp. 8), we get slightly better
and statistically significant improvements compared to raw NMT. Fine-tuning this NMT model further
towards the actual NMT data (Exp. 9), as well as performing checkpoint averaging using the 8 best
checkpoints improves the results even further. Compared to wmt18smt

best and wmt19nmt
best , our architecture

is simpler, faster during inference, it follows the two-step approach of professional post-editors, and has
no additional overhead like BERT.

The reasons for the effectiveness of our approach can be summarized as follows. (1) Our encsrc→mt

contains two attention mechanisms: one is self-attention and another is cross-attention. The self-attention
layer is not masked here; therefore, the cross-attention layer in encsrc→mt is informed by both previous
and future time-steps from the self-attended representation of mt (encmt) and additionally from encsrc.
As a result, each state representation of encsrc→mt is learned from the context of src and mt. This
might produce better representations for decpe which can access the combined context. In contrast, in
wmt18smt

best, the decpe accesses representations from src and mt independently, first using the represen-
tation from mt and then using that of src. (2) The position-wise feed-forward layer in our encsrc→mt of
our model requires processing information from two attention modules, while in the case of wmt18smt

best,
the position-wise feed-forward layer in dectgt needs to process information from three attention modules,
which may increase the learning difficulty of the feed-forward layer. (3) Since pe is a post-edited version
of mt, sharing the same language, mt and pe are quite similar compared to src. Therefore, attending
over a fine-tuned representation from mt along with src, which is what we have done in this work, might
be a reason for the better results than those achieved by attending over src directly.

Evaluating the influence of the depth of our encoders and decoder show that while the decoder depth

2http://www.statmt.org/wmt19/qe-task.html
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appears to have limited importance, reducing the encoder depth indeed hurts performance which is in
line with Domhan (2018).

6 Conclusions

In this paper, we presented a multi-encoder transformer-based APE model that repurposes the standard
transformer blocks in a simple and effective way for the APE task: first, our transference architecture
uses a transformer encoder block for src, followed by a decoder block without masking on mt that
effectively acts as a second encoder combining src → mt, and feeds this representation into a final
decoder block generating pe. The proposed model outperforms the best-performing system of WMT
2018 on the test2016, test2017, dev2018, and test2018 data. Moreover, our model is on par with but
simpler than WMT 2019 best system since our model does not apply BERT or any conservative factor
during inference.

Taking a departure from traditional transformer-based encoders, which perform self-attention only, our
second encoder also performs cross-attention to produce representations for the decoder based on both
src and mt. We also show that the encoder plays a more pivotal role than the decoder in transformer-
based APE, which could also be the case for transformer-based generation tasks in general. Our architec-
ture is generic and can be used for any multi-source task, e.g., (i) Multi-source Translation (ii) document
translation to model the associated context during translation, (iii) Question Generation to generate ques-
tion from given passage and a short answer text, (iv) Question Answering task from given passage and
question text, (v) Summarization, etc.
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