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Abstract

Podcasts are a large and growing repository of spoken audio. As an audio format, podcasts are
more varied in style and production type than broadcast news, contain more genres than typi-
cally studied in video data, and are more varied in style and format than previous corpora of
conversations. When transcribed with automatic speech recognition they represent a noisy but
fascinating collection of documents which can be studied through the lens of natural language
processing, information retrieval, and linguistics. Paired with the audio files, they are also a re-
source for speech processing and the study of paralinguistic, sociolinguistic, and acoustic aspects
of the domain. We introduce the Spotify Podcast Dataset, a new corpus of 100,000 podcasts. We
demonstrate the complexity of the domain with a case study of two tasks: (1) passage search
and (2) summarization. This is orders of magnitude larger than previous speech corpora used for
search and summarization. Our results show that the size and variability of this corpus opens up
new avenues for research.

1 Introduction

Podcasts come in many formats and levels of formality. Episodes appear on a regular or irregular ca-
dence. They can be formal news journalism or conversational chat; fiction or non-fiction. They are
sharply growing in popularity (Whitner, 2020) and yet have been relatively little studied. This medium
opens up a rich palette of questions and issues for research in speech and language technology, linguis-
tics, information access, and media studies.

To facilitate research into podcasts, we have produced a corpus of podcast episodes, comprising nearly
60,000 hours of speech. This is orders of magnitude larger than previous transcribed speech datasets, and
contains a rich variety of genres, subject matter, speaking styles, and structural formats. Our contribu-
tions are four-fold:

• The largest corpus of transcribed speech data, from a new and understudied domain,
• A set of labeled data for retrieval and summarization on this corpus,
• Benchmarking results for retrieval and summarization tasks using standard baselines,
• An analysis of the data and benchmarking results, highlighting domain differences from vanilla

versions of these tasks to motivate areas of future research.
The corpus can be accessed at podcastsdataset.byspotify.com.
∗∗ Work done while at Spotify

This work is licensed under a Creative Commons Attribution 4.0 International License.
License details: http://creativecommons.org/licenses/by/4.0/.
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2 Related Datasets

Earlier speech corpora contained relatively clean audio, often with a single speaker reading from a pre-
pared text, such as the TIMIT collection (Garofolo et al., 1990) or broadcast news corpora, which have
been used as data sets for speech retrieval experiments in both TREC (Garofolo et al., 2000) and CLEF
(Federico and Jones, 2003), and for Topic Detection and Tracking (Allan et al., 1998). These more for-
mal settings or samples of formal content are useful for the study of acoustic qualities of human speech,
but represent a more idealized scenario than practical audio processing tasks of interest today.

Conversational datasets with noisier speech have been collected for specific domains, often intended
to capture regularities of some particular communication situation, such as the ATIS corpus of air travel
information requests (Hemphill et al., 1990), meeting recordings (Garofolo et al., 2004b), telephone
conversations (Canavan et al., 1997; Godfrey and Holliman, 1993), and broadcast news (Garofolo et
al., 2004a). There are some collections of more naturally occurring conversational material such as the
CALLHOME corpus (Canavan et al., 1997), the Santa Barbara Corpus of Spoken American English
(Bois and Engebretson, 2005) and the TED talks corpus (Hasebe, 2015). While some of the content
in such collections share characteristics with podcast material, podcasts’ combination of unscripted and
spontaneously organised discourse in a conversational setting, with turntaking, interviews, stretches of
monologue, argumentation, and the inclusion of other audio material including non-speech segments is
not yet represented in any collection of spoken language available with transcripts for research purposes.

For summarization corpora in particular, the CNN/DailyMail data (Hermann et al., 2015) is one of the
few large summarization datasets with manually written summaries. Spoken document summaries are
also available for the AMI meeting corpus (Mccowan et al., 2005) and the ICSI meeting corpus (Janin
et al., 2003), as well as corpora of lectures (Miller, 2019), and voicemail (Koumpis and Renals, 2005).
Spina et al. (2017) collect and evaluate 217 hours of podcasts for query-biased extractive summarization.
In recent work, Tardy et al. (2020) train a model to reproduce full-length manual reports aligned with
automatic speech recognition transcripts of meetings, and Gholipour Ghalandari et al. (2020) generate a
corpus for multi-document summarization.

3 Data Overview

We have compiled the Spotify Podcast Dataset, the first large scale corpus of podcast audio data with
automatically generated transcripts. This corpus is drawn from a variety of creators, ranging from pro-
fessional podcasters with high production value, to amateurs recording podcasts using an application
on their mobile phone. The podcasts cover a wide range of topics including lifestyle & culture, sto-
rytelling, sports & recreation, news, health, documentary, and commentary. In addition, the content is
delivered in a variety of structural formats, number of speakers, and levels of formality, some scripted,
others improvised, and presented in the forms of narrative, conversation, or debate. Besides search and
summarization, this data is valuable for tasks such as document segmentation or dialog modeling, and
will enable new avenues of speech and language technology research.

Our corpus consists of over 100,000 podcast episodes, consisting of nearly 60,000 hours of audio
and accompanying transcripts, as well as metadata such as creator-provided descriptions. The data was
initially provided in the the context of the TREC Podcast Track (Jones et al., 2020). We now make it
available for more general research use.

3.1 Data Sampling and Transcription

We randomly sampled 105,360 podcast episodes published between January 1, 2019 and March 1, 2020
from the Spotify platform. After filtering for several criteria shown in Table 1, we sampled about 10%
from professional creators, with the remainder coming from amateur podcast creators. Podcast episodes
were sampled uniformly at random. The episodes are all Spotify owned-and-operated, for copyright
reasons. Currently the data set is restricted to the English language. We hope to extend the data set to
further languages in the near future. The language determination is based on (1) the language indicated

1https://pypi.org/project/langid/
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Language We restricted our dataset to English according to the metadata tags
provided by the creator. Since this labeling is somewhat noisy,
we further filtered by running the n-gram based langid.py1

Length We filter out any non-professionally published episodes that are longer than 90 minutes
Speech Presence Using a proprietary speech detection algorithm, we ignored episodes belonging to podcasts that

averaged less than 50% speech over the duration of the episode. This filters out podcasts that are
more music than speech, or white noise and meditation.

Table 1: Filters used in sampling podcast episodes for the corpus.

(a) Transcript snippet

Episode Name Mini: Eau de Thrift Store
Episode Description ELY gets to the bottom of a familiar aroma with cleaning expert Jolie Kerr.

Guest: Jolie Kerr, of Ask a Clean Person. Thanks to listener Theresa.
Publisher Gimlet
RSS Link https://feeds.megaphone.fm/elt-spot

(b) Some of the accompanying metadata

Figure 1: Sample from an episode transcript and metadata

by the creator of the podcast as well as (2) a further automatic language identification algorithm applied
to the creator-provided description. In spite of this we found a number of non-English podcasts in
the dataset. This reflects how the multi-lingual reality of the data at hand defies the assumption of
mono-lingual cultures: some descriptions given for non-English podcasts are written in English, from
cultural areas where English frequently is more frequently used for writing; some other podcasts use
many languages as a matter of course. Some examples of the types of multi-lingual podcasts episodes
in the corpus include language learning podcasts, where English is the language of instruction, code-
switching (eg Tagalog or Spanish speakers occasionally using English words and phrases), and podcasts
analysis of religious texts where the text is read in the original language, and then the analysis of that
text is in English. The podcast episodes cover a range of geographical regions, topical domains, and
production quality; they vary in length and they include very short trailers as well as hour-long pieces.

We generate the text transcripts automatically using Google’s Cloud Speech-to-Text API2, which pro-
vides word-level time alignments for each word as well as speaker diarization, casing, and punctuation.
Figure 1 shows an example snippet from a transcript and metadata, which includes episode name, show
and episode description, publisher, duration, and the RSS header. The automatic speech recognition out-
put showed robustness across the heterogeneous dataset, with a sample word error rate of 18.1% and a
named entity recognition accuracy of 81.8%. This word error rate is higher than the output of highly op-
timized state of the art systems on corpora like Switchboard (Godfrey and Holliman, 1993) that report a
word error rate of less than 5% (Bhatnagar et al., 2020), likely because of the domain mismatch between
podcasts and the training data for the speech recogniser. However, we believe this word error rate is low
enough that the transcribed corpus is valuable to the NLP, speech, and linguistics communities, as long
as the noise is considered during algorithm development and analysis. Furthermore, since we do release
the full audio as well, researchers that rely on clean transcripts may wish to manually transcribe the data.
We also anticipate that the state of the art in automatic speech recognition will improve in the coming
years, allowing for more accurate automatic transcriptions.

2https://cloud.google.com/speech-to-text/docs/video-model
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3.2 Corpus Characteristics

The episodes in our corpus come from 18,376 podcast shows. 52% of shows are represented by more
than one episode in the sample. The average episode duration is 33.8 minutes and 5,700 transcribed
words, with large variance. Creator-provided episode descriptions average 85 words in length. The
most to least common categories (as given by the creators in the RSS feed), weighted by episode length,
are: Comedy, Sports, Health & Fitness, Society & Culture, and Education, Science, News & Politics,
Government & Organization, and Fiction. The geographic origins of a small number (2,223) of these
episodes are provided by the creators. Of those, majority (67%) come from the US, followed by Great
Britain, Canada, Australia, and India.

Using the automatically inferred speaker diarization, the median speaker turn length per episode is
about 110 seconds; more information on speaker distributions is in Appendix A. The automatic diariza-
tion is noisy: on manually checking 20 random episodes, we found that 11 have errors in the number of
speakers, and another 4 have errors in speaker boundaries.

As an indication of the linguistic differences of the podcast data from traditional written corpora, a
comparison with the Brown corpus (Francis and Kučera, 1967) shows how relative frequency of 1st
person pronoun and amplifiers3, features characteristic of conversational, informal language style, are
much more common than in the Brown corpus (Table 2). This hints that this data may be of interest to
research in sociolinguistics or computational social science.

Feature Podcast data Brown corpus
1st person pronouns 4.3% 0.40% (Press, reviews) - 2.6% (Romance novels)
Amplifiers 0.71% 0.15% (Press, reportage) - 0.35% (Press, reviews)

Table 2: Some selected lexical items’ relative frequency of occurrence

Fitting an LDA topic model (Blei et al., 2003) with 100 topics to the transcripts yields topics corre-
sponding to the categories and themes in the dataset, as well as discourse markers and slang reflecting
the different styles (Table 3).

game play team ball point player win playing played three better line season ... content
kid family mom child parent dad life old home mother house sister father ...
god jesus church life lord word love bible christ heart spirit faith verse pray ...
money pay dollar month business million property hundred paid real thousand ...
song music album artist listen love record hip hop sound track new heard ...
yeah oh okay yes exactly gonna feel guess sure cool pretty stuff definitely hmm ... discourse
okay question yes maybe saying tell talk oh answer ask talking sure person thank point ...
different example might use term important point change type level able may bit ...

Table 3: A selection of LDA topics showing the breadth of both subjects (sports, family, religion, busi-
ness, music, etc) and discourse styles (informal, conversational, technical, etc) in the dataset.

4 Search: Spoken Passage Retrieval

High-quality search of topical content of podcast episodes is challenging. Existing podcast search en-
gines index the available metadata fields for the podcast as well as textual descriptions of the show and
episode (Besser et al., 2008). These descriptions often fail to cover the salient aspects of the content.
Improving and extending podcast search is limited by the availability of transcripts and the cost of auto-
matic speech recognition. Our case-study is for fixed-length segment retrieval: given an arbitrary query
(a phrase, sentence or set of words), retrieve topically relevant segments from the data. These segments
can then be used as a basis for topical retrieval, for visualization, or other downstream purposes (Eske-
vich et al., 2012). A segment, for the purposes of our benchmark, is a two-minute chunk with one minute

3Amplifiers are a lexical items that increase the intensity of an expression, typically constructed as an adverbial, e.g. very,
really, totally, or amazing (Quirk et al., 1985). The list used here is found in Appendix B.
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Query Type Description
black hole image topical In May 2019 astronomers released the first-ever picture

of a black hole. I would like to hear some conversations
and educational discussion about the science of astron-
omy, black holes, and of the picture itself.

story about riding a bird re-finding I remember hearing a podcast that had a story about a
kid riding some kind of bird. I want to find it again.

daniel ek interview known item Someone told me about a podcast interview with Daniel
Ek, CEO of Spotify, about the founding and early days
of Spotify. I would like to find the show and episode
that contains that interview. Other interviews with Ek
are relevant as well.

Table 4: Sample topics with query and description

overlap and starting on the minute; e.g. 0.0-119.9 seconds, 60.0-179.9 seconds, 120.0-239.9 seconds,
etc. This creates 3.4M segments in total from the benchmark with the average word count of 340 ± 70.

4.1 Evaluation Data for Search

We created a small set of search information needs, called topics, following those used by the Text
REtrieval Conference (TREC) (Voorhees and Harman, 2005). Each topic consists of a keyword query
and a description of the user’s information need. Topics can be one of three types: topical (general
information about the topic), re-finding (searching for a specific episode the user heard before), and
known item (finding something that is known to exist but under an unknown name) (Besser et al., 2010).
Table 4 displays sample topics for each type.

Gold standard data for evaluation consists of human judgments of the relevance of segments to the
topics. We used a simple BM25-based search to retrieve segments for judging, manually varying the
query terms to try to increase coverage. We started with expert annotation by the paper authors on
609 passages retrieved for an initial set of 8 topics, then added 1060 crowd-sourced labels for passages
retrieved for 14 more for a total of 22 topics, with annotations for 1669 query-passage pairs. To assist
their judgment they could use the metadata, the full transcript, the audio, and any other resources they
found helpful. The annotators used a standard graded scale of Excellent/Good/Fair/Bad, along with a
Perfect grade for re-finding and known item topics. Table A1 in Appendix C shows the guidelines we
provided the human assessors.

For collecting relevance judgements on the remaining 14 topics, we used the Appen4 system for crowd-
sourcing. We used our expert annotated judgements on the first 8 queries as the assessors’ quality control
tests for crowd-sourcing. We pooled the top 50 retrieved segments from the four aforementioned retrieval
systems. Every segment was annotated by at least three annotators and in the case of disagreement we let
the system to go up to 7 trusted annotations. These assessments proved to be quite noisy. To increase their
utility, we only used judgments from assessors that had at least 40% accuracy in the quality control tests
(i.e. 40% agreement with our own assessments, in line with Voorhees’ work showing 40% agreement
about relevance among expert assessors (Voorhees, 2000).

4.2 System Description for Search

We implemented as baselines standard retrieval models BM25 and query likelihood (QL) with the RM3
relevance model for relevance feedback (Lavrenko and Croft, 2017), using the Pyserini package5 for
search functionality, built on top of open-source Lucene6 search library. Stemming was performed using
the Porter stemmer. Four models, BM25, BM25+RM3, QL, and QL+RM3, are used with Anserini’s default
parameters.7

4https://appen.com
5https://github.com/castorini/pyserini – a Python front end to the Anserini open-source information re-

trieval toolkit (Yang et al., 2017)
6https://lucene.apache.org
7BM25 parameter settings k = 0.9, b = 0.4; RM3 settings fbTerms = 10, fbDocs = 10, originalQueryWeight = 0.5; QL

setting for Dirichlet smoothing µ = 1000
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4.3 Results for Search

We use mean nDCG metric for evaluation in this task. An episode may contain one or more relevant
segments, some of which may be overlapping, but these are treated as independent items for the purpose
of nDCG computation. We evaluated each system over the 22 topics described above. Table 5 and Table 6
show results, with the former showing results broken out by query as well as overall mean, and the latter
showing only the mean. Note that systems are not distinguishable; none of the results are statistically
significant. However, we do consistently see that QL has the highest nDCGs, and both QL and BM25
have higher nDCGs than their RM3 counterparts.

nDCG@5 nDCG@10
BM25 BM25+RM3 QL QL+RM3 BM25 BM25+RM3 QL QL+RM3

1 coronavirus spread 0.6655 0.6597 0.7169 0.5933 0.6717 0.7278 0.678 0.6579
2 greta thunberg cross atlantic 0.5801 0.1461 0.8136 0.4469 0.4742 0.2731 0.5655 0.391
3 black hole image 0.8721 0.851 0.7261 0.7104 0.7921 0.785 0.7325 0.7413
4 story about riding a bird 0 0 0 0 0 0 0 0
5 daniel ek interview 0 0 0 0 0 0 0 0
6 michelle obama becoming 0.0838 0 0 0 0.0643 0 0.0363 0
7 anna delvey 0 0 0 0 0 0 0 0
8 facebook stock prediction 0.5591 0.3367 0.7016 0.4409 0.6005 0.5394 0.6792 0.5477

all 0.3451 0.2492 0.3698 0.2739 0.3253 0.2907 0.3364 0.2922

Table 5: nDCG scores for 8 human expert annotated topics.

nDCG@5 nDCG@10
BM25 0.2737 0.3325

BM25+RM3 0.2731 0.3261
QL 0.2660 0.3357

QL+RM3 0.2542 0.3329

Table 6: nDCG scores for 14 crowdsourced test topics.

4.4 Lessons Learned for Spoken Passage Retrieval

Among the IR systems we tested, we do not observe significant difference in performance, likely due to
the limitations of basic bag-of-word strategies. However, Table 5 shows different test topics achieve very
different results. Three queries retrieve no relevant material; one retrieves very little. Two queries suffer
from automatic speech recognition errors, as they create challenges for retrieving named entities. For
example, we observed that anna delvey is never transcribed correctly, but similar-sounding phrases like
in a del v, and an adele v are found in the transcripts instead. Similarly, ek is often mistranscribed as ech
or eck. Systems will need to be more robust in retrieving low confidence named entities in the presence
of automatic speech recognition errors.

The fourth query story about riding a bird is not well suited to traditional query-term matching in-
formation retrieval techniques. This suggests an approach involving classifying podcasts into types, eg
story, interview etc, then recognizing the type sought by a query. The sixth query michelle obama be-
coming is hurt due to the common word becoming and the relatively high frequency with which Michelle
Obama is a subject of discussion in podcast episodes. Advanced query-processing bringing in real-world
knowledge that Michele Obama is the author of the book Becoming could address this case. We also find
that the documents in languages other than English (Table 1) can become distractors: when run through
automatic speech recognition for English they produce many less-frequent terms which can be retrieved
despite being irrelevant to the query.

One interesting observation with our pseudo relevance expansion experiments is the “poison pill” ef-
fect of the expansion terms using RM3 (Terra and Warren, 2005). For almost all of our queries, exploiting
RM3 for extracting expansion terms degraded the retrieval performance. Error analysis of query number
2 shows that terms related to atlantic (such as shark, etc.) are boosted whereas terms related to greta
thunberg are lowered.
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Length descriptions that are very long (> 750 characters) or short (< 20 characters)
amounting to 24, 033 or 23% of the descriptions.

Similarity to other descriptions descriptions with high lexical overlap (over 50%) with other episode descriptions
amounting 15, 375 or 15% of the descriptions.

Similarity to show description descriptions with high lexical overlap (over 40%) with their show description,
amounting to 9, 444 or 9% of the descriptions.

Table 7: Filters to remove less descriptive episode descriptions, to form the brass subcorpus.

5 Summarization

Automated document summarization is the task of condensing an input text into a much shorter form
that preserves most of the salient information. This dataset presents several challenges: 1) the input
documents are automatically transcribed, and thus subject to speech recognition errors, 2) the documents
are frequently of a casual, conversational nature, with utterance fragments and disfluencies, and 3) the
documents are significantly longer than typical summarization data. Thus, this task is most closely
related to prior work in spoken document summarization and long document summarization (Cohan et
al., 2018; Xiao and Carenini, 2019).

5.1 Data Preparation for Summarization: Brass Subcorpus and Gold Test Data

To train supervised models on this dataset, we consider the creator-generated descriptions as our refer-
ence summaries. However, these descriptions vary widely in quality and are not always intended to act
as summaries of the episode content, reflecting the different uses creators have for descriptions and the
different genres of podcast in the sample. In order to select a subset of the corpus that is suitable for train-
ing supervised models, we filtered the descriptions using three heuristics shown in Table 7. These filters
overlap to some extent, and remove about a third of the entire set. The remaining 66,245 descriptions we
call the Brass Set.

To derive gold labeled data, we internally annotated the outputs of different baseline systems on a sam-
ple of 303 episodes. We asked annotators to assess a summary’s quality on a Excellent/Good/Fair/Bad
(EGFB) scale, after reading the full transcript and/or listening to some of the audio if needed. Table A2
in Appendix C shows the guidelines we used.

5.2 Baseline Systems: Unsupervised Extractive and Supervised Abstractive

We ran an unsupervised summarizer, TextRank (Mihalcea and Tarau, 2004)8, on the test data. The
algorithm creates a graph of sentences, where the edge between a pair of sentences represents their
similarity, and the sentences of highest importance, or “centrality”, are computed using PageRank. We
extract the top two central sentences as the unsupervised summary.9 We also generated a naive baseline
consisting of the first minute of spoken content.

We ran two variants of supervised models for generating abstractive summaries, both using BART
(Lewis et al., 2020), as implemented in Huggingface10. For the first supervised variant, we simply
used a pretrained model11, which we refer to as BART-CNN, consisting of a large unsupervised BART
model that was fine-tuned to the summarization task on the CNN/DailyMail dataset12. For our second
supervised variant, we further fine-tuned the BART-CNN model to the podcast data, using the brass
training set. We refer to this model as BART-PODCASTS. For both of these, we used the default
hyperparameter settings, including a maximum input length requirement of 1024 tokens, significantly
shorter than the average transcript length (thus, for longer inputs, the model simply ignored everything
after the first 1024 tokens).

8We used the Python sumy package, https://github.com/miso-belica/sumy
9We also ran LexRank (Erkan and Radev, 2004) and a summarizer using LSA (Steinberger and Jezek, 2004), but found

from a pilot evaluation that TextRank was more successful.
10https://github.com/huggingface/transformers/tree/master/examples/summarization
11https://huggingface.co/facebook/bart-large-cnn
12https://s3.amazonaws.com/datasets.huggingface.co/summarization/cnn\_dm.tgz
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5.3 Evaluating Summary Quality
For evaluation of the baseline system outputs, we consider both automated metrics and human assess-
ments. For automated metrics, we use standard flavors of ROUGE, as implemented in FILES2ROUGE13

using the (noisy) creator descriptions as the reference.
Despite the variance in quality of the creator descriptions, we present the ROUGE scores against these

descriptions as reference summaries and compare them against human judgements. We give the ROUGE

scores on the test set broken out separately into the set of episodes whose descriptions passed the brass
set filter versus those that failed the filter in Table 8.

Brass Non-Brass
R1-F R2-F RL-F R1-F R2-F RL-F

FIRST MINUTE 18.90 3.92 9.68 16.89 3.67 9.78
TEXTRANK 15.25 2.04 8.69 13.04 1.58 7.99
BART-CNN 20.67 4.87 12.6 22.93 5.3 14.52

BART-PODCASTS 28.24 13.34 21.39 29.46 12.87 22.07

Table 8: ROUGE scores bucketed by whether the test descriptions passed the brass filter.

The ROUGE scores are in the same range as other reported experiments on this dataset (Zheng et al.,
2020; Jones et al., 2020). They are lower than many other summarization benchmarks such as those on
news corpora, for several likely reasons: (1) we do not have true reference summaries and the creator
descriptions that we use as references were not written with the intent to summarize the podcast, (2)
the transcripts are noisy, (3) the informality and heterogeneity of many podcasts makes them difficult to
summarize.

To obtain assessments for the summary outputs, we asked human assessors to provide judgements
assessed against the transcript, rather than against a gold summary. The results (Table 9) are robust:
both the BART-CNN and BART-PODCASTS summarizers are nearly as good as the creator-provided
descriptions on average, and in many specific cases provides better and more useful output. The unsu-
pervised methods are rated lowest, with the FIRST MINUTE baseline outperforming TEXTRANK, likely
since the first minute of podcasts often describes the content to follow.

Brass Non-Brass

E G F B Pct Good
or Better E G F B Pct Good

or Better
CREATOR 37 35 33 39 50% 36 57 36 30 58%

FIRST MINUTE 10 33 46 55 30% 10 38 61 50 30%
TEXTRANK 2 10 43 89 8% 3 13 35 108 10%

BART-CNN 8 47 40 49 38% 28 40 41 50 43%
BART-PODCASTS 17 50 43 34 47% 37 51 35 36 55%

Table 9: Human labeled score distribution

5.4 Analysis of Summarization Results
In order to understand how well the brass labeled set will work as an automated training or test set, we
analyze the quality with expert labels. We see from Table 9 that creator descriptions, taken as summaries,
are of variable quality and that the summaries generated by supervised models have comparable perfor-
mance. We also see that surprisingly, the nearly on-par performance of BART-PODCASTS holds for both
the brass and the non-brass set. For more discussion and examples of this, see Appendix Section E.

The correlation between ROUGE and human judgements can degrade in spoken domains with multiple
speakers (Liu and Liu, 2008). This issue could be further exacerbated in this podcast dataset, where our
reference summaries are the noisy creators’ episode descriptions. However, we find the same ranking of
models by manual annotations and ROUGE scores: BART-PODCASTS > BART-CNN > FIRST MINUTE

> TEXTRANK. To test this further, we grouped the description by their human labels, and compared the
13https://github.com/pltrdy/files2rouge
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induced system rankings of those with Excellent/Good descriptions as references to those with Fair/Bad
reference descriptions. We found that the same ranking between systems holds across these buckets; for
details, see Tables A5 and A6 in the Appendix. This suggests that ROUGE scores are meaningful for
automated evaluation. We plan on further analysis using a larger human labeled set in the future.

On the whole, the abstractive BART models were rated higher than TextRank and the first-minute
baseline on both human and ROUGE evaluations. Extractive models suffer from errors caused by speech
recognition or the natural disfluency of spoken language, whereas the abstractive models seem to be
more able to generalize over these errors and generate relatively fluent written language. Furthermore,
while extractive models pick out topically salient bits of the transcript, those isolated bits do not always
translate to an overview of the episode, whereas the abstractive models are able to generate overview
statements from the transcript (example 1 in Table A7). Extractive models also suffer from failing to
contextualize the text they select.

6 Conclusions and Future Work

We have presented the first large-scale dataset of transcribed podcasts. With this we have given bench-
marks for a passage retrieval and a summarization task, along with an analysis that highlights ways
in which this widely-varying spoken domain presents challenges for natural language processing and
information retrieval.

In this work, we have limited our analysis to the transcriptions; however, there is much to be gained
from considering the audio data as well for these and other tasks. In the NLP domain, podcasts are an
ideal testbed not only for retrieval and summarization from transcripts, but also end to end summarization
– translating the original audio into either a written summary or a short audio trailer – or retrieval tasks
that leverage the audio, such as keyword search and spoken document retrieval. Given that there are
multiple interlocutors in a podcast, speaker identification and role prediction are relevant problems of
interest. In the information retrieval domain, the collection presents challenges in the noisy nature of
the data, as well as the highly varied ways of speaking. The range of topics, stances, sentiments, and
conversation styles that are present in the corpus provide rich ground for opinion mining and discourse
analysis. Podcasts are also a promising medium for developing models that consider linguistic style in
addition to topical material. The very varied styles and topics in the corpus suggest that this data may
be of interest to research in sociolinguistics or computational social science. Paired with the audio files,
they are also a resource for speech processing and the study of the acoustic aspects of the domain.
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A Appendix: Speaker distributions

(a) Visualization of speaker turns over the course of a conversational short episode

(b) Number of speakers per episode. (c) Primary speaker’s share.

Figure A1: The dataset comprises episodes ranging from monologues to multi-speaker conversations.
The plots are derived from the automatic speaker diarization output. While the output may be noisy, the
aggregate distributions demonstrate the different conversational styles in the dataset.

B Appendix: List of amplifiers
absolutely fantastic ridiculously
amazing fantastically severely
amazingly genuinely significantly
awfully greatly striking
completely highly strikingly
definitely horribly strongly
dramatic hugely substantially
dramatically immaculately surely
drastic immensely surprising
drastically incredible surprisingly
emphatic incredibly terribly
emphatically insanely thoroughly
enormously intensely totally
entirely overly truly
exceedingly particularly undoubtedly
exceptional perfectly unusual
exceptionally phenomenal unusually
excessively phenomenally utterly
extraordinarily radically vastly
extraordinary really very
extremely remarkable wildly
famously remarkably wonderfully
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C Appendix: Guidelines for assessment

Perfect Should only be used for ”known item” and ”refinding” topic types with a specified ”Perfect” result. That
result (and no other) should be judged ”Perfect”. For known item queries only: “perfect” for a point very
near the start of the one relevant episode, and degrading from there if it’s in the episode but further away
from the start, to fair if it’s the same show but not the right episode, to bad if it’s not even the same show.

Excellent The segment conveys highly relevant information, is an ideal entry point for a human listener, and is fully
on topic. An example would be a segment that begins at or very close to the start of a discussion on the
topic, immediately signalling relevance and context to the user.

Good The segment conveys highly-to-somewhat relevant information, is a good entry point for a human listener,
and is fully to mostly on topic. An example would be a segment that is a few minutes “off” in terms of
position, so that while it is relevant to the user’s information need, they might have preferred to start two
minutes earlier or later.

Fair The segment conveys somewhat relevant information, but is a sub-par entry point for a human listener
and may not be fully on topic. Examples would be segments that switch from non-relevant to relevant (so
that the listener is not able to immediately understand the relevance of the segment), segments that start
well into a discussion without providing enough context for understanding, etc.

Bad The segment is not relevant.

Table A1: Guidelines for assessment of search relevance.

Excellent Accurately conveys all the most important attributes of the episode, which could include topical content,
genre, and participants. It contains almost no redundant material which isn’t needed when deciding
whether to listen.

Good Conveys most of the most important attributes and gives the reader a reasonable sense of what the episode
contains. Does not need to be fully coherent or well edited. It contains little redundant material which
isn’t needed when deciding whether to listen.

Fair Conveys some attributes of the content but gives the reader an imperfect or incomplete sense of what the
episode contains. It may contain some redundant material which isn’t needed when deciding whether to
listen.

Bad Does not convey any of the most important content items of the episode or gives the reader an incorrect
sense of what the episode contains. It may contain a lot of redundant information that isn’t needed when
deciding whether to listen to the episode.

Table A2: Guidelines for assessment of summaries.
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D Appendix: Full ROUGE scores

R1-R R1-P R1-F R2-R R2-P R2-F RL-R RL-P RL-F
FIRST MINUTE 14.45 41.63 18.90 3.0 9.13 3.92 7.16 24.52 9.68

TEXTRANK 12.1 30.62 15.25 1.64 4.26 2.04 6.78 18.71 8.69
BART-CNN 26.4 22.7 20.67 6.58 5.51 4.87 15.79 14.8 12.6

BART-PODCASTS 39.42 28.59 28.24 18.06 14.08 13.34 29.09 22.38 21.39

Table A3: ROUGE scores for 144 test descriptions that passed the brass filter.

R1-R R1-P R1-F R2-R R2-P R2-F RL-R RL-P RL-F
FIRST MINUTE 11.23 45.71 16.89 2.39 11.09 3.67 6.38 29.69 9.78

TEXTRANK 9.11 35.44 13.04 1.12 4.35 1.58 5.52 23.04 7.99
BART-CNN 23.35 29.2 22.93 5.3 7.13 5.3 14.39 19.57 14.52

BART-PODCASTS 34.73 31.35 29.46 15.04 13.73 12.87 25.67 24.02 22.07

Table A4: ROUGE scores for the 159 test descriptions that did not pass the brass filter

R1-R R1-P R1-F R2-R R2-P R2-F RL-R RL-P RL-F
FIRST MINUTE 9.1 43.74 13.51 2.28 11.46 3.41 5.29 30.26 8.09

TEXTRANK 8.35 30.52 11.38 1.31 4.3 1.71 5.2 20.89 7.23
BART-CNN 17.93 26.72 18.29 4.19 6.17 4.17 11.13 18.6 11.74

BART-PODCASTS 31.69 34.59 28.58 17.9 18.93 15.9 25.96 29.0 23.6

Table A5: ROUGE scores against the test descriptions were assessed by humans as bad or fair.

R1-R R1-P R1-F R2-R R2-P R2-F RL-R RL-P RL-F
FIRST MINUTE 15.84 43.86 21.51 3.04 9.14 4.15 8.0 24.76 11.14

TEXTRANK 12.4 35.4 16.4 1.44 4.36 1.9 6.92 21.07 9.27
BART-CNN 30.56 25.64 24.86 7.37 6.55 5.9 18.37 16.26 15.2

BART-PODCASTS 41.53 26.37 29.24 15.48 9.89 10.9 28.6 18.59 20.34

Table A6: ROUGE scores against the test descriptions were assessed by humans as excellent or good.

D.1 Do episodes with better descriptions have better summaries?
We see that the ROUGE scores of all systems tend to be higher on episodes with Excellent or Good descriptions (Table A6)
compared to those with Fair or Bad descriptions (Table A5). This may be due to one of two reasons: a better description is
more “summary-like”, implying greater similarity to system-generated summaries, and episodes with good descriptions are
also of higher production quality and fluency, resulting in better summarization performance.
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E Appendix: Creator descriptions compared to the abstractive models
Table A7 contrasts some creator and system summaries. In example 1, the creator summary is well punctuated with correct
casing, is syntactically accurate, and describes briefly the intent of the podcast and where it would be made available. In
contrast, the fine-tuned BART generated summary has incorrect casing, lacks punctuation at sentence boundaries, and does not
have the same comprehensional quality as the CREATOR summary.

However, in example 2, it is evident that lack of details in the creator summary makes it uninformative to a user. On the
other hand, the fine-tuned BART summary syntactically and semantically conveys the content of the podcast succinctly, but
misses out on details that could better introduce the podcast show to a casual reader. Similarly, example 3 shows a Bad creator
summary where the text is elongated and details are insufficient with no hint of topic of discussion. On the other hand, the
model summary introduces the hosts by their names and then gives additional context for the episode, followed by additional
topics discussed in the episode.

1 CREATOR
(Good)

Motivated by a lack of basic humility in the mainstream media, I will be employing the Pod-
cast format and Instagram to deliver information about the recent outbreak of Coronavirus
(COVID-19) to help you discern fact from fiction on your own to empower an informed per-
sonal response.

TEXTRANK
(Bad)

I think the number one thing right now is just the public has been lulled into a sense of compla-
cency regarding, you know, the reality of biology, you know, and we’ve seen the the explosion
of last 15 years of the mobile device, you know, like the iPhone or the Android and social media
and I think that you know, the Google Facebook Apple iPhone so forth, you know model of the
internet largely is to blame for the hiccup in Wall Street last week without that sort of Insanely
rapid expansion and the way that information is distributed.

BART-
PODCASTS
(Excellent)

In this episode, Dr. William Cairo-Bowl introduces the podcast and gives his background
and background background on the basic science of the coronavirus. He also provides a brief
overview of what to expect in future episodes.

2 CREATOR
(Excellent)

Get comfortable, and drift off as you listen to Genesis 37, 39-40. Listen to Amber Lawton as
she reads you the Bible at bedtime. Pleasant dreams.

BART-
PODCASTS
(Fair)

Let me Soothe you 2 Sleep as we listen 2, by request, more from an interesting newly released
version ”Beginnings” by editors Elmer Towns & Lee Fredrickson. This is part 1 of 2. — Join
us in Bible.

3 CREATOR
(Bad)

Importance level : High

BART-
PODCASTS
(Good)

Import of crude oil from Iran has been banned under the US sanctions imposed in November
2018. India has been allowed to continue importing crude oil at a reduced rate of up to 6 months
but now the exemption has been extended to till the end of May 23, 2019. The impact of this
decision on Indian Crude oil.

4 CREATOR
(Bad)

JOSHHHHHHHHHHHHHHHHHHHHH GORDOOOOOOOOOOONNNNNNNNN

BART-
PODCASTS
(Excellent)

Brycen and Alfie are back with a recap of the Patriots/Titans preseason game, as well as a
preview of the Week 2 preseason game against the Texans. They also talk about the return of
Josh Gordon and what to expect from him this season.

Table A7: Extractive systems like TextRank fail to generate summaries that are fluent and span the
themes in the episode in comparison to the abstractive model. While creator summaries tend to be good
on the whole, there are several cases where the abstractive model generates summaries that are rated
higher.


