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Abstract

In this paper, we evaluate the progress of our field toward solving simple factoid questions over
a knowledge base, a practically important problem in natural language interface to database. As
in other natural language understanding tasks, a common practice for this task is to train and
evaluate a model on a single dataset, and recent studies suggest that SimpleQuestions, the most
popular and largest dataset, is nearly solved under this setting. However, this common setting
does not evaluate the robustness of the systems outside of the distribution of the used training
data. We rigorously evaluate such robustness of existing systems using different datasets. Our
analysis, including shifting of training and test datasets and training on a union of the datasets,
suggests that our progress in solving SimpleQuestions dataset does not indicate the success of
more general simple question answering. We discuss a possible future direction toward this goal.

1 Introduction

Simple factoid question answering over a knowledge base is an important task in natural language un-
derstanding. Although it only deals with factoid questions about a single entity and a predicate, they
cover much of the real user queries (Dai et al., 2016), and also, accurate mapping of these is a critical
subproblem in semantic parsing-based complex query generation (Berant et al., 2013; Bao et al., 2016;
Reddy et al., 2016; Trivedi et al., 2017). SimpleQuestions (Bordes et al., 2015) is the largest and most
popular dataset on this task. It was recently argued that this task, given abundant training data, is nearly
solved with standard techniques in machine learning (Petrochuk and Zettlemoyer, 2018; Mohammed et
al., 2018).

In this paper, we present a thorough empirical analysis to assess whether the success of one particular
dataset indicates the success of the task itself in general. To this end, we evaluate the behaviors of four
existing QA systems targeting SimpleQuestions (Mohammed et al., 2018; Yu et al., 2017; Wu et al.,
2019; Huang et al., 2019), across four different datasets (Cai and Yates, 2013; Yih et al., 2016; Bordes
et al., 2015; Jiang et al., 2019), under different conditions. One of our research goals is to evaluate the
robustness of a model trained on a single dataset against questions that are outside of the distribution of
the training data. Such robustness evaluation is recently actively studied in other language understanding
tasks (Jia and Liang, 2017; Naik et al., 2018; McCoy et al., 2019; Ribeiro et al., 2020) while little effort
has been made on question answering over a knowledge base, though, in practice, it would be critical
because a practical system has to be robust on real user queries, which may be outliers in the training
data.

Our experiments suggest that, while SimpleQuestions is the largest, the examples are too simple and
the success on it does not indicate progress in factoid question answering in general. For example, we
show that, under the same training data size, the system’s accuracy on SimpleQuestions gets about 10
points higher than that on WebQuestions. Although the simplicity of SimpleQuestions is pointed out
in past work (Jiang et al., 2019), our work provides an empirical evidence that this is indeed the case
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with a careful comparison and manual analysis using the standardized datasets. Given our analysis, we
suggest two possible future directions. One is to invent a clever novel data creation method that would
be scalable while avoiding bias as much as possible. In this respect, we point out that a recent attempt
by FreebaseQA (Jiang et al., 2019) is not successful, and that significant bias still exists. Another is to
exploit useful information from the large dataset of SimpleQuestions in a better way. In the last analysis,
we demonstrate that a simple approach of training on a union of the datasets (Talmor and Berant, 2019)
is not satisfactory toward this end, calling for a more sophisticated method of exploiting useful features
across datasets effectively.

2 Datasets

We use four QA datasets over a knowledge base (KB) as our target datasets. These datasets were se-
lected because they share a common KB (Freebase), and a large portion of each dataset comprises
of factoid questions, which are the main focus of this paper. A factoid question asks a single fact,
or a triple (subject, predicate, object) on a KB, where the object corresponds to the answer. For
example, “Which country is Albert Bolender from?” corresponds to a fact (Albert Bolender,
people.person.nationality, ?), where the placeholder found in the KB is the target object,
which is United States.

Free917 (Cai and Yates, 2013) This is the first dataset for machine learning-based semantic parsing
over Freebase. It contains 917 questions on a subset of Freebase, called Freebase Commons, covering 81
domains. Berant et al. (2013) find that each question tends to contain words that are directly related to
the target Freebase predicate. An example is “What genre of music is B12?”, for which the gold predicate
is music.artist.genre. We use an annotated Free917 dataset by Bast and Haussmann (2015).1

WebQSP (Yih et al., 2016) This is an extension of WebQuestions (Berant et al., 2013) with gold
SPARQL query on each question, which is missing in the original dataset. Aiming at creating more
natural questions than Free917, each question is derived from the Google Suggest API, followed by
filtering by crowd workers. Consequently, the authors observe a larger divergence between the question
words and predicates, such as “What music did Beethoven compose?”, for the aforementioned predicate
music.artist.genre. This dataset contains 4,737 questions.

SimpleQuestions (Bordes et al., 2015) This is the largest dataset in our experiments, containing
over 100,000 questions answerable by a single fact. Contrary to WebQuestions, each question in this
dataset is created from a sampled fact in Freebase, which is then verbalized and paraphrased by a crowd
worker. Possibly due to this procedure starting from a KB fact, we find that, as in Free917, this dataset
also tends to verbalize a predicate with directly related terms, such as “What type of music . . .?” for
music.artist.genre.2 This approach eases the collection of a lot of data and is popular in data
creation for semantic parsing (Wang et al., 2015; Trivedi et al., 2017; Talmor and Berant, 2018). How-
ever, we will see in Section 4.3 that it also tends to introduce certain biases, which affect models’ gen-
eralization. The authors also define a subset of Freebase called FB2M that covers 2M entities and 5K
predicates, including all entities appearing in WebQuestions, and create all questions from this subset.

FreebaseQA (Jiang et al., 2019) This is the latest dataset aiming at more difficult factoid questions
than SimpleQuestions while maintaining the scale of data size. Specifically, the questions in this dataset
are first sampled from TriviaQA (Joshi et al., 2017) and then filtered by heuristics to collect factoid
questions answerable on Freebase. Although the authors argue that their procedure reliably eliminates
non-factoid questions, we find several problems in this dataset, which we describe in Section 4.2.

2.1 Preprocessing
Apart from the difference in construction methods, the four datasets additionally differ based on (1)
whether they contain non-factoid questions and (2) the assumed subset of Freebase. Because we aim

1https://github.com/ad-freiburg/aqqu
2Cai and Yates (2013) only mention that questions are written by two native English speakers and do not state whether they

access to a predicate when writing questions, but we find two datasets are similar in this respect.
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Dataset Original One triple questions Answerable by FB2M
Training Valid Test Training Valid Test Training Valid Test

Free917 512 129 276 0 0 637 0 0 347
WebQSP 2,478 620 1,639 1,350 338 915 1,292 323 861
SimpleQuestions 75,910 10,845 21,687 75,910 10,845 21,687 75,895 10,843 21,680
FreebaseQA 20,358 3,994 3,996 13,495 2,660 2,677 10,427 2,048 2,102

Table 1: Data statistics after preprocessing (number of examples). We use “Answerable by FB2M” subset
in this paper. Since Free917 is small, we use the entire dataset as the test set.

Training Validation # of questions Training Validation # of questions Training Validation # of questions
FBQ FBQ 71 ( 3.47%) SQ FBQ 137 ( 6.69%) WQ FBQ 1,068 (52.15%)

SQ 2,582 (23.87%) SQ 71 ( 0.66%) SQ 6,862 (63.45%)
WQ 52 (16.15%) WQ 19 ( 5.90%) WQ 26 ( 8.07%)

Table 2: Numbers of examples with unseen relations across one training set and one validation set. The
number in a bracket denotes a ratio in the validation split. For example, 71 (3.47%) examples in the valid
set of FBQ contain relations not appearing in the training set of FBQ.

to evaluate the behavior of a single model across these four datasets, we perform some preprocessing
on each dataset to eliminate those factors. Specifically, from all datasets, we filter questions that do not
match the domain of SimpleQuestions; that is, we remove the questions that involve a multi-hop path or
multi constraints, such as “What character did Natalie Portman play in Star Wars?” in WebQSP, and
questions with entities or predicates that are outside of FB2M. Table 1 shows the resulting statistics of
each dataset.3 Unfortunately, because this procedure makes Free917 too small, we use the entire dataset
as the test set. Following Berant et al. (2013), we take 20% of the training split as the validation split for
WebQSP. We abbreviate these four datasets as F917, FBQ, WQ, and SQ, respectively.

Table 2 summarizes how much of the predicates in one dataset (valid split) are unseen (i.e., zero-shot)
in another dataset (training split). Since zero-shot prediction is hard (Wu et al., 2019), we use these as a
rough estimate on the difficulty of an experiment in Section 4.

3 Systems

Now we describe four systems that we compare across the datasets. Since we only deal with single fact
questions in this paper, all questions can be answered by correctly predicting a subject entity e and a
relation r on the KB. To search for the best pair, all systems in this paper employ a pipeline, which is
comprised of three different submodules below:

1. entity linking, which outputs a set of candidate subject entities {e};
2. relation prediction, which outputs a set of candidate predicates {r}; and
3. query generation, which finds the best (ê, r̂) pair by reranking the candidate pairs.

While some earlier systems, such as Bordes et al. (2015), employ a different approach, their accuracies
are not state-of-the-art. We do not include these in our experiments.

The systems differ in each submodule. There are also some minor variations in pipeline constructions.
We select the four target systems considering their high accuracies on SimpleQuestions, as well as the
availability of the code.4

BuboQA (Mohammed et al., 2018)5 In this system, both entity linking and relation prediction are
modeled with simple classifiers. Despite its simplicity, this approach outperforms several more complex

3The reason for the decrease in the first step for FreebaseQA is that it contains two-hop questions involving a mediator node
in Freebase, which we exclude from the target.

4When searching for open software, we often found that many systems along with a paper are not self-contained; in
particular, they often are missing an entity linking module. This is especially the case for systems targeting WebQus-
tions, for which many systems rely on the outputs of the entity linker used in Yih et al. (2015) and found in https:
//github.com/scottyih/STAGG, while the entity linker itself is not available.

5https://github.com/castorini/BuboQA
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architectures (Bordes et al., 2015; Yin et al., 2016). Specifically, for entity linking, a trained LSTM first
detects the entity spans, which are then heuristically mapped to the candidate KB entities and scored with
the Levenshtein distance to the canonical entity label. Relation prediction is performed independently by
another classifier on top of a different LSTM. Finally, the best combination of (ê, r̂) is found according
to a weighted sum of these two module scores.6 This is an extension of an even simpler baseline of Ture
and Jojic (2017), and a similar approach is employed in Petrochuk and Zettlemoyer (2018).

Note that this system treats relation prediction as classification among the predicates appearing in the
training data. This means that it cannot solve zero-shot relation prediction, which occurs to some extent
especially in the dataset transfer experiment (Section 4.3). On the other hand, the other three systems
theoretically can handle them, as described in the following.

Hierarchical Residual BiLSTM (HR-BiLSTM) (Yu et al., 2017) On this system (and the next,
KBQA-Adapter), relation prediction is performed differently, not by classification on a fixed set of rela-
tions, but by mapping on a shared embedding space for KB relations and texts. This model simply en-
codes both question tokens and relation tokens (e.g., “music artist genre” for music.artist.genre)
by different encoders. Relation candidates are then ranked by cosine similarity between the outputs of
two encoders. This method allows us to calculate the score of an unseen relation. For this system, since
Yu et al. (2017) do not release their code, we use the implementation by Wu et al. (2019). Unfortunately,
this implementation only includes the relation prediction module rather than the full pipeline. We thus
try to reproduce the pipeline described in Yu et al. (2017), using the entity linking module of BuboQA.
See Appendix A for details. We use the same pipeline for KBQA-Adapter.

KBQA-Adapter (Wu et al., 2019)7 This is an improvement to HR-BiLSTM with an additional ad-
versarial adapter coupled with the relation encoder. The motivation of this adapter is to improve the
zero-shot relation prediction performance. To this end, the adapter receives a relation embedding for r
provided by KG embeddings, which is JointNRE (Han et al., 2018), transforming it to an embedding
space where unseen relations can be handled properly. We employ the same pipeline with the BuboQA
entity linker for this system.

Knowledge Embedding-based QA (KEQA) (Huang et al., 2019)8 This system also builds on an
external knowledge graph embedding, TransE (Bordes et al., 2013), which is used as the more direct and
central part in the system. Given a knowledge graph embedding, which is fixed, this model tries to map
each question into an entity embedding ê and relation embedding r̂, using separate LSTMs. We expect
ê to be close to the gold node embedding in the graph and r̂ to the gold relation embedding. Also, we
would expect that the transition defined by the embedding model (e.g., addition for TransE), f(ê, r̂), will
get close to the answer node embedding. The query generation step of the system selects the (ê, r̂, ô)
triple based on this intuition, by minimizing the summed distances from embeddings corresponding to ê,
r̂, and ô to the obtained encoded embeddings.

Settings and Notes9 For all models, we employ the best architectures and hyperparameters reported in
the paper or a related document. For the first three systems, we set the number of entity linking outputs
as 50, and that of relation prediction as 5, which are the default settings for BuboQA. Note also that these
three systems share the same entity linking module of BuboQA. For evaluation, following the standard
practice of SimpleQuestions, we evaluate the accuracy of predicted (subject, predicate) pairs.

4 Experiments

4.1 Results when trained on single datasets

Here, we evaluate different models (Section 3) primarily suggested to solve SimpleQuestions across
the normalized datasets (Section 2). In addition to the standard experiment on a single dataset, we also

6Although the paper mentions that the two scores are multiplied, in the implementation they are summed with fixed weights.
7https://github.com/wudapeng268/KBQA-Adapter
8https://github.com/xhuang31/KEQA_WSDM19
9You can find the code used in our experiments at https://github.com/aistairc/simple-qa-analysis.
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Training dataset Test dataset BuboQA HR-BiLSTM KBQA-Adapter KEQA
FBQ F917 17.29 36.31 35.73 36.02

FBQ 38.25 28.40 28.78 28.73
SQ 23.77 38.55 39.19 42.97
WQ 29.10 30.27 31.43 33.18

SQ F917 40.92 56.20 59.37 45.24
FBQ 20.08 17.84 18.13 14.03
SQ 74.81 72.30 72.01 75.35
WQ 41.79 35.27 36.32 40.40

WQ F917 12.68 29.97 29.39 32.85
FBQ 7.94 7.61 8.37 8.90
SQ 16.46 33.18 35.32 38.01
WQ 61.23 49.94 49.36 65.19

Table 3: Comparison of top-1 accuracies across datasets (on the test set). The bold value denotes the
highest accuracy in each row.

provide an experiment across two datasets, where we train a model on one dataset and test on another. We
are interested in this setting, because in a practical scenario, there might be a gap between the distribution
of training data, which depends on the way the data was created, and that of test data, which would be
real user queries. For example, as we saw in Section 2, the data creation of SimpleQuestions allows
collecting a lot of data easily while the data distribution of WebQuestions may match the distribution in
the wild. We evaluate these models’ robustness to the shift of data distributions.

Table 3 summarizes the main results on the test data. The grey rows correspond to the single dataset
settings. Comparing these three rows, the accuracies on FBQ and WQ are consistently lower than SQ,
suggesting that FBQ and WQ have some data characteristics that cause difficulties for the current models,
which we inspect in detail in Section 4.2. When evaluated on a different dataset, which we call dataset
transfer in the following, the accuracies degrade even more. Note that F917 is used as a test-only dataset
(Section 2), and the accuracy on it is relatively high when trained on SQ. As we discussed in Section 2,
SQ and F917 are somewhat similar. This suggests that, as can be expected, the accuracies on this transfer
setting are affected by some notion of distance between datasets and the current models are quite sensitive
to it. We will analyze in Section 4.3 what exactly is the main cause of these degradations.

4.2 What makes WebQSP and FreebaseQA more difficult?

WQ and FBQ are more challenging than SQ according to Table 3 (gray rows). Understanding the cause
of this difficulty is important because it directly relates to the remaining challenges in solving factoid
questions in general. We test several possibilities including the dataset quality to reach an accurate
answer.

Upperbounds due to the ambiguity are not the reason Petrochuk and Zettlemoyer (2018) find that
the upperbound accuracy of SQ is around 83% due to the inherent ambiguity in the data; e.g., given a
question “who wrote gulliver’s travels?”, there is more than one equally plausible interpretation since
there are multiple entities for guliver’s travels such as the book, TV miniseries, and films, all of which
could be compatible with “who wrote . . .?”. To test the possibility that lower accuracies on WQ and
FBQ are due to even more severe ambiguity in the data, we perform the same analysis on FBQ and
WQ, finding that the upperbounds are 86.85% for WQ and 84.16% for FBQ, respectively, which are
comparable to SQ. This rejects the possibility that the upperbounds for these two datasets are low.

Quality of FreebaseQA is not high Inspecting datasets, we find that some questions in FBQ are not a
factoid question, such as “What is the highest volcano in Africa?”, which requires an aggregate operation
but the gold subject and predicate are just (Africa, location.contains). We suspect that
these questions remain in FBQ due to noisy filtering from unrestricted questions, which only assesses
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Label F917 FBQ SQ WQ
impossible 1 13 1 4
notsimple 0 15 5 1
badgold 0 12 4 5
multisubj 1 9 0 1
multirel 1 4 2 1
other 0 1 3 0
okay 97 46 85 88

Table 4: Labeling results on random 100 questions from the validation split for each dataset.

Label Example Details
impossible In the musical Annie, what is Orphan Annie’s

dog called?
There is no identifier for Annie’s dog in FB2M.

notsimple What is the highest peak on Dartmoor? The highest cannot be evaluated in a single triple.
badgold Where was Princess Leia raised? The gold relation is place of birth, but Leia was

raised elsewhere since infancy.
multisubj Who wrote the novels “Berlin Game”, “Mexico

Set” and “London Match”?
Berlin Game, Mexico Set, and London Match can all
derive the correct answer.

multirel Where is South Salt Lake, Utah located? Both location.hud county place.county and loca-
tion.location.containedby can be the correct relation.

other What operating system uses ssh file transfer
protocol?

Not operating systems, but sshftp programs use sshftp.

Table 5: Examples for the labels used in Table 4.

the path from a subject to an object with little care for additional constraints. The overall quality might
be exacerbated by a reliance on non-experts (crowds) for the final assessment.

To quantify how much of the examples are problematic, we sample 100 questions from the validation
split on each dataset and categorize them with the labels defined in Table 5. Table 4 is the result. For this
labeling, impossible, notsimple, and badgold labels indicate non-faithful (question, gold label) pairs as
in the above example, while multisubj and multirel are rather the problems due to the evaluation method,
because they mean that there are multiple correct labels while the current evaluation only allows a gold
one. From Table 4, we can see that 40% of questions in FBQ are non-faithful, much higher than the
other datasets. From this result, we argue that lower accuracies on FBQ are not due to the true difficulty
as factoid questions, but rather due to the undesirable complexity incurred by an inaccurate data creation
process. Considering this problem, we will pay little attention to this dataset in the following analysis.

Data size does not account for the gap between WQ and SQ One major difference between SQ and
WQ is the training data size (Table 1), with SQ being roughly 60 times larger. Is this data size the main
source of the performance gap seen in Table 3? Or, is it due to the inherent complexity of WQ compared
to SQ? To answer this question, we compare SQ and WQ eliminating the data size effects, by preparing
a smaller SQ dataset, which has an equal size as WQ. When sampling data from SQ, we only sample
examples with predicates that appear in the corresponding split of WQ. We also keep the ratio of unseen
relations in the validation split as roughly 8%, the same as WQ (Table 2). We create 10 different subsets
of SQ and report the average accuracies on them. We evaluate the systems on the validation splits.

In Table 6, we summarize the scores of BuboQA and KEQA, which perform better on original SQ and
WQ in Table 3. Interestingly, the accuracies on small-sized SQ are the same level as those of the original
dataset. This indicates that the main factor causing the performance gap between WQ and SQ is not the
data size, but the complexity or the inherent difficulty of the dataset, which we inspect next.

Entity linking is challenging Among the three steps in the systems (Section 3), we hypothesize that
relation prediction is the main bottleneck on WQ since predicates tend to be nontrivially verbalized com-
pared to SQ (Section 2). Table 7 shows in particular for BuboQA that this is not the case. Here, we
evaluate the component-wise performance of entity linking (EL) and relation prediction (RP). We evalu-
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Dataset BuboQA KEQA
SQ (valid) 75.79 76.69
Small-sized SQ (valid) 73.47±1.69 76.27±2.39
WQ (valid) 59.32 66.15

Table 6: Comparison of end-to-end accuracies (on the validation split) across SQ, small-sized SQ, and
WQ. The scores for small-sized SQ are averaged across 10 cases (see body).

Dataset BuboQA-Final BuboQA-EL BuboQA-RP KEQA-Final KEQA-EL KEQA-RP
FBQ 38.25 58.28 81.21 28.73 47.62 55.42
SQ 74.81 90.40 95.64 75.35 90.74 94.38
WQ 61.23 78.23 90.92 65.19 82.75 84.97

Table 7: Comparison of module-level accuracies (R@50 for entity linking (EL) and R@5 for relation
prediction (RP)) for BuboQA and KEQA. “Final” denotes end-to-end top-1 accuracies.

Training Test BuboQA-Final BuboQA-EL BuboQA-RP KEQA-Final KEQA-EL KEQA-RP
FBQ F917 17.29(−00.00) 70.32(−00.00) 29.11(−00.00) 36.02(−00.00) 60.81(−00.00) 60.23(−00.00)

SQ 23.77(−51.04) 71.96(−18.44) 39.79(−55.85) 41.83(−33.52) 69.94(−20.80) 71.79(−22.59)
WQ 29.10(−32.13) 69.85(0−8.38) 59.95(−30.97) 33.18(−32.01) 75.32(0−7.43) 62.86(−22.11)

SQ F917 40.92(−00.00) 85.30(−00.00) 55.04(−00.00) 45.24(−00.00) 69.45(−00.00) 69.45(−00.00)
FBQ 20.08(−18.17) 48.62(0−9.66) 49.00(−32.21) 14.03(−14.70) 34.06(−13.56) 37.73(−17.69)
WQ 41.79(−19.44) 75.90(0−2.33) 78.11(−12.81) 40.40(−24.79) 74.62(−08.13) 67.05(−17.92)

WQ F917 12.68(−00.00) 65.99(−00.00) 18.44(−00.00) 32.85(−00.00) 59.08(−00.00) 54.47(−00.00)
FBQ 07.94(−30.31) 35.25(−23.03) 24.79(−56.42) 08.90(−19.83) 36.20(−11.42) 26.07(−29.35)
SQ 16.46(−58.35) 66.71(−23.69) 25.00(−70.64) 38.01(−37.34) 68.49(−22.25) 65.00(−29.38)

Table 8: Comparison of module-level accuracies in the dataset transfer setting. Final: end-to-end accu-
racy; EL: R@50; and RP: R@5. The number in brackets denotes the difference from the non-transfer
baseline (Table 7). The cells for FBQ are represented in gray considering the issues in the dataset.

ate R@50 for EL and R@5 for RP, which are the sizes of candidates in two components of BuboQA.10

We can see that for both systems EL scores degrade about 10 points from SQ to WQ, which is roughly
the same level as decreases in final accuracies. Accuracy of entity linking is critical for both systems
because, at the final query generation step, predicate candidates are restricted to ones connected to the
selected entities. This means that if the entity linking performs poorly, that can be a bottleneck of the en-
tire system. KEQA suffers from a larger decrease of RP (94.38→84.97) than BuboQA (95.64→90.92),
but we conjecture that this can be mainly attributed to the dependence of RP on EL for KEQA (foot-
note 10).

Inspecting the errors of entity linking by BuboQA, we find a particularly challenging case, specific to
WQ, is the superficially ambiguous entities, such as “Mexico”, which matches to more than 1,000 differ-
ent entities in Freebase, according to the inverted index by BuboQA. In the top candidates, we notice that
many entities are song and album names. The handling of these ambiguous entities is challenging for
BuboQA since it does not rely on statistical techniques for disambiguation (only the Levinstein distance).
This suggests that we need a more sophisticated entity linker exploiting a context for disambiguation.
KEQA’s approach is promising, but the current system has an opposite problem, as we discuss in the
next section.

4.3 What makes dataset transfer challenging?
So far we have seen that the system’s performance gaps between two datasets, SQ and WQ, largely come
from the gaps in entity linking performance. Can the same explanation hold for the large gaps with the

10 For KEQA, we get the same numbers of candidates for EL and RP that are closest to the predicted embeddings in the
vector space. In this process, we restrict the candidates for RP as ones that are connected to one of the entity candidates,
mimicking the final process of the system.
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Label BuboQA HR-BiLSTM KBQA-Adapter KEQA
relnotfound 8 3 7 9
wrongent 14 13 12 35
wrongrel 23 23 21 31
ambient 2 1 1 -
ambirel 29 27 18 24
unknown 7 - - -
other - - - 1
Total 83 67 59 100

Table 9: Labeling of errors on examples (in the validation set of WQ), which are missed by changing the
training data from WQ to SQ. Bold font denotes the errors on relation prediction.

Label Example Datails
relnotfound Who was vice president under Lincoln? Gold relation us president.vice president

is an unseen relation (not appear in the SQ training
split).

wrongent What to do with kids in phx az? The systems finds a different entity than the correct
entity Phoenix, Arizona.

wrongrel What money is used in England? The systems finds a different relation than the correct
location.country.currency used.

ambient Where were the Chickasaw Indians located? Predicted entity is Chickasaw Nation while gold
entity is Chickasaw. Both are OK on Freebase.

ambirel Who is Aidan Davis? Gold answer is people.person.profession,
but prediction is common.topic.notable types.

unknown Where was the battle of Antietam creek? The system outputs nothing by failing to bridge pre-
dicted entities and relations.

other What is the actual current local time now in uk? Freebase cannot answer the current time.

Table 10: Examples for the labels used in Table 9

dataset transfer setting in Table 3? To answer this question, Table 8 summarizes the submodule accuracies
for the transfer setting, on which the numbers in parentheses are degradations from the non-transfer
setting. For example, R@50 of BuboQA’s entity linking drops 2.33 points on WQ, when changing
training data from WQ to SQ. From the table, we can see that score drops are more severe in relation
prediction. We conjecture that entity linking is less affected by transfer because expressions of entities
(e.g., the name of a person) are relatively fixed compared to predicates across datasets.

To confirm what kinds of questions become hard by shifting training data, we manually analyze errors
on examples from SQ→WQ case in Table 8. This analysis is on the validation split. For each system, we
select up to 100 examples, which are originally solved, but failed when trained on WQ, and categorize the
errors according to Table 10. If multiple labels would apply, we choose the highest one from the table.
Since an entity linking error often accompanies a relation prediction error (Section 4.2), we prioritize
errors related to entity linking (under the same category). The top priority for relnotfound (zero-shot
relation prediction) is under the assumption that they are particularly hard for models.

Table 9 shows the result. Note that the total numbers are not 100 for some systems, because we only
consider examples that original models (trained on WQ) answer correctly. We can see that errors related
to relation prediction are dominant across systems, which is consistent with Table 8. We distinguish two
types of relation errors: wrongrel means a totally wrong prediction while ambirel is a spurious error,
for which, the predicted relation leads to the correct answer on Freebase, but the current label-based
metric penalizes it. We find that most of this latter case occurs by ambiguities of profession and
notable types, which are often aliases. For a question “who is . . .?“, the gold relation of SQ is often
notable types, but that is often profession in WQ. This can be seen as a kind of dataset bias,
and one way to resolve it is to change the evaluation metric to evaluate the answers, not labels. Under
the current metric, this can be seen as an inherent limitation of solving all questions under the dataset
transfer setting. While these are spurious, the other half of relation prediction errors are wrongrel. We
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Test dataset BuboQA HR-BiLSTM KBQA-Adpater KEQA
F917 43.80(+1.98) 55.33(−0.87) 59.08(−0.29) 46.69(+1.45)
FBQ 36.01(−2.24) 28.64(+0.24) 26.55(−2.23) 27.07(−1.66)
SQ 74.18(−0.63) 71.87(−0.43) 71.56(−0.45) 74.89(−0.46)
WQ 60.65(−0.58) 45.05(−4.89) 46.33(−3.03) 61.35(−3.84)

Table 11: The final top-1 accuracies by a single model trained on a union of FBQ, SQ, WQ training
set. The number in brackets denotes the difference from the model trained on a single target dataset (in
Table 3). F917 is compared with the best model (best training data) for each system.

find that these are essentially due to different paraphrasing patterns of a predicate across datasets, as we
discussed in Section 2, and this result suggests such variation for a predicate is the main challenge for
the transfer.

Finally, we notice that KEQA contains more entity linking errors (wrongent), and in many cases, these
errors are distinguished in that they are completely irrelevant to the target entity. This suggests that the
KEQA entity linker would be more affected by a dataset bias, possibly due to not relying on a string
match when linking. An interesting future direction is an extension with additional features to take into
account the surface similarities as in BuboQA, which would lead to more robust generalization.

4.4 Effects of combining datasets

Our final experiment is to see the performance of a model trained on the union of the target datasets.
This is inspired by the recent success of MultiQA (Talmor and Berant, 2019), which, on reading compre-
hension, shows that a single model trained on the union of multiple datasets outperforms a model trained
specifically on each single dataset. We combine training data of FBQ, SQ, and WQ, and train a model on
it. We are particularly interested in whether the accuracy of WQ improves with the help of statistical cues
from other datasets, although we have seen that the transfer from SQ only is hard. Table 11 is the result
along with the amount of increase/decrease from a model trained on the single dataset (corresponding to
the test data). We can see that the model can handle each dataset well on average, but in most cases, the
scores do not improve from the single dataset baselines.

This result might be reasonable from our detailed analysis so far. In Section 4.2, we find that the main
challenge on remaining errors of WQ is in ambiguous and difficult cases of entity linking. However,
entity linking of BuboQA is lexical pattern-based, not statistical, indicating that additional statistical
cues from SQ are not very helpful for saving the difficult cases. For KEQA, we find that its entity linking
performance is worse on WQ when trained only on SQ (Table 9). This suggests that, although it is
statistical, KEQA does not exploit useful features from SQ examples to handle WQ, at least regarding
entity linking. A better model or a learning method could utilize the data with different distribution in a
clever way, but our analysis suggests that current methods do not have such an ability.

5 Conclusion

Through several experiments, we have shown that although the system performance on SimpleQuestions
dataset is getting better and close to the upper bound, that does not indicate a more general success of
simple factoid question answering overall. The main cause of this mismatch is that, as we have seen,
there is often an inverse relationship between the ease of data collection and naturalness of collected
questions. We found that although the data creation of SimpleQuestions, starting from a KB fact and
verbalizing by a crowd worker, is advantageous in terms of scalability, the resulting dataset is too simple,
as we demonstrated that the systems can achieve high accuracies even with a limited amount of training
data. WebQuestions, on the other hand, is a collection of real user queries with several challenges
including ambiguous entity mentions, but such questions are more difficult to collect, in particular in
terms of the coverage of entities and relations. It is ideal that systems trained on a simpler and scalable
dataset become robust on the questions outside of the distribution of the training data, but our experiment
on dataset transfer suggests that the current approaches do not achieve this.
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We suppose there are two possible directions toward general simple question answering, or question
answering over a knowledge base in general. The first is to improve the dataset quality. We need to
create a dataset, that is real and challenging, while still being scalable. FreebaseQA can be seen as an
attempt toward this goal, but we found that this dataset has several issues. Another direction is to invent
a model or a learning mechanism that can generalize robustly from biased datasets. Our data union can
be seen as a simple approach toward this end, but we found that current models do not exploit useful
information beyond each target dataset. More sophisticated approaches, such as distributionally robust
optimization (Delage and Ye, 2010; Oren et al., 2019), may help. Another promising way is relying on
strong pretrained language models, including BERT (Devlin et al., 2019). We have not included BERT-
based models in this paper, because its application on SimpleQuestion has not outperformed a simpler
baseline so far (Lukovnikov et al., 2019), and it is also nontrivial to integrate BERT with knowledge graph
embeddings, which is necessary for KEQA-based approach and is currently actively studied (Peters et
al., 2019; Weijie et al., 2020). The integration of such approaches, along with robustness evaluation as
done in this paper, will be of practical importance toward robust question answering not specific to a
single dataset.
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Appendix A The pipeline for HR-BiLSTM and KBQA-Adapter

In this pipeline, rather than the three steps for BuboQA, entity linking will be performed twice. Specif-
ically, the initial entity linking step outputs slinker(e; q), which is a score for entity e on question q, for
K-best candidates, and for each relation r that is connected from these candidate entities, relation score
srel(r; q) is calculated by the relation prediction module. These scores are then used to recalculate the
final entity scores srerank(e; q), which will be used in the query generation step along with slinker(e; q)
for ranking (e, r).

Although Yu et al. (2017) report the equation for srerank(e; q) their hyperparameters are not specified,
and we find that reproducing their results with that equation is difficult. We instead find that calculating
srerank(e; q) by a similar equation to the one used in the final step of BuboQA works well:

srerank(e; q) = 0.6 · slinker(e; q) + 0.1 ·max
r∈Re

srel(r; q). (1)

The weights (0.6 and 0.1) are the default values for BuboQA. Given these scores, the final query gener-
ation will be done by the same module as BuboQA.

Apart from Yu et al. (2017) we do not reduce the number of entity candidates with entity reranking
(Eq 1). This means we just rescore the 50 candidates found by the BuboQA entity linker.

Appendix B All results of combining two datasets

Training Test BuboQA HR-BiLSTM KBQA-Adpater KEQA
FBQ+SQ F917 44.96(+04.04) 57.06(+00.86) 59.37(+00.00) 46.69(+01.45)

FBQ 34.58(−03.67) 28.73(+00.33) 26.97(−01.81) 27.50(−01.23)
SQ 74.33(−00.48) 72.37(+00.07) 71.65(−00.36) 74.90(−00.45)
WQ 46.80(−14.43) 33.88(−16.06) 37.83(−11.53) 43.54(−21.65)

Training Test BuboQA HR-BiLSTM KBQA-Adpater KEQA
FBQ+WQ F917 21.33(−19.59) 38.04(−18.16) 40.06(−19.31) 36.89 (−08.35)

FBQ 37.63(−00.62) 30.07(+01.67) 27.88(−00.90) 29.12(+00.39)
SQ 26.50(−48.31) 43.69(−28.61) 44.22(−27.79) 45.92(−29.43)
WQ 62.17(+00.94) 48.66(−01.28) 47.73(−01.63) 64.96(−00.23)

Training Test BuboQA HR-BiLSTM KBQA-Adpater KEQA
SQ+WQ F917 40.06(−00.86) 54.76(−01.44) 57.64(−01.73) 47.84(+02.60)

FBQ 21.65(−16.60) 20.03(−08.37) 18.74(−10.04) 13.89(−14.83)
SQ 74.56(−00.25) 72.36(+00.06) 71.98(−00.03) 75.16(−00.19)
WQ 58.44(−02.79) 46.57(−03.37) 44.94(−04.43) 61.00(−04.19)

Table A: Experimental results of BuboQA, HR-BiLSTM, KBQA-Adapter, and KEQA with the FQ+SQ,
FQ+WQ, and SQ+WQ. The number in bracket means the difference of accuracy with the same training-
test dataset experiments shown as Table 3. F917 is compared with the best model (best training data) for
each system.
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Appendix C The comparison between our implementations and original papers for QA
systems

Dataset Implementation Accuracy Dataset Original Accuracy
SQ BuboQA 74.8 SimpleQuestions Mohammed et al. (2018) 74.9
SQ HR-BiLSTM 72.3 SimpleQuestions Yu et al. (2017) 78.7
SQ KBQA-Adapter 72.0 SimpleQuestion-Balance Wu et al. (2019) 63.7
SQ KEQA 75.4 SimpleQuestions Huang et al. (2019) 75.4

Table B: Experimental results for our implementations and reported accuracies by original papers of QA
systems. Note that SQ is not equal with SimpleQuestions, so this comparison can not be interpreted
directly. Especially, we need to notice that SimpleQuestions-Balance (Wu et al., 2019) is designed for
the zero-shot learning task; therefore it is the more difficult dataset than SimpleQuestions.


