
Proceedings of the 28th International Conference on Computational Linguistics, pages 2739–2753
Barcelona, Spain (Online), December 8-13, 2020

2739

Conversational Machine Comprehension: a Literature Review

Somil Gupta
CICS, UMass Amherst

somilgupta@umass.edu

Bhanu Pratap Singh Rawat
CICS, UMass Amherst
brawat@umass.edu

Hong Yu
CICS, UMass Lowell
Hong Yu@uml.edu

Abstract

Conversational Machine Comprehension (CMC), a research track in conversational AI, expects
the machine to understand an open-domain natural language text and thereafter engage in a
multi-turn conversation to answer questions related to the text. While most of the research in
Machine Reading Comprehension (MRC) revolves around single-turn question answering (QA),
multi-turn CMC has recently gained prominence, thanks to the advancement in natural language
understanding via neural language models such as BERT and the introduction of large-scale con-
versational datasets such as CoQA and QuAC. The rise in interest has, however, led to a flurry of
concurrent publications, each with a different yet structurally similar modeling approach and an
inconsistent view of the surrounding literature. With the volume of model submissions to conver-
sational datasets increasing every year, there exists a need to consolidate the scattered knowledge
in this domain to streamline future research. This literature review attempts at providing a holis-
tic overview of CMC with an emphasis on the common trends across recently published models,
specifically in their approach to tackling conversational history. The review synthesizes a generic
framework for CMC models while highlighting the differences in recent approaches and intends
to serve as a compendium of CMC for future researchers.

1 Introduction

Developing open-domain, intelligent dialog systems that can satisfactorily interact like humans, perform
complex tasks and/or answer on a range of topics has been one of the most ambitious and difficult goals
in Artificial Intelligence (AI). The study of such systems, called Conversational AI (ConvAI), is at the
confluence of Natural language Processing (NLP), Information Retrieval (IR), and Machine Learning
(ML), attracting significant research from both academia and industry. The recent developments in Deep
Learning (DL) (Du and Black, 2019; Hatua et al., 2019) and Reinforcement Learning (RL) (Lipton et al.,
2016; Peng et al., 2018) have further boosted research in the domain, making it one of the most sought
after research topics in AI.

Based on the nature of problems, a ConvAI system is expected to solve three major research problems
(Gao et al., 2018). Question Answering (QA) involves providing answers to user queries through con-
versation, using the knowledge drawn from various data sources like a snippet from a text, a collection
of web documents, or an entire knowledge base. Task completion expects the conversational agent to
accomplish task/s for the user, using the information acquired through conversation. Finally, Social Chat
makes the agent emulate humans and converse seamlessly and appropriately with users, as in the Turing
test (Saygin et al., 2000). Each of these fields has its own set of challenges to tackle.

Challenges in QA can vary depending on the source of knowledge, the answer extraction strategy em-
ployed, and the domain of the question. Machine Reading Comprehension (MRC) is one such chal-
lenge in QA, that requires the conversational QA (ConvQA) agent to understand a given open-domain
text and thereafter answer question/s in conversation about it. These questions are often not paraphrased
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and may co-reference previous queries. The required answer may be a span of the given text or free-
form. When the machine comprehension dialog involves multiple co-referenced questions such that a
latter question may be a logical successor of the former, the challenge is termed as Conversational Ma-
chine Comprehension (CMC). A lot of research in MRC revolves around single-turn QA, but multi-turn
CMC also holds major relevance because humans seek information conversationally by asking follow-up
questions for additional information based on what they have already learned. Still, the inherent com-
plexity involved in dealing with text comprehension and reasoning over dialogs and context had kept
CMC as a far-fetched goal. However, the recent success in achieving at-par-with-human performance
on single-turn MRC models (Rajpurkar et al., 2018) due to the advancement in natural language under-
standing and modeling (Devlin et al., 2019; Lan et al., 2019; Liu et al., 2019a), and the introduction of
large-scale conversational datasets CoQA (Reddy et al., 2019) and QuAC (Choi et al., 2018) have made
information-seeking dialogs possible.

As a consequence, CMC has seen a significant surge in research in recent years. In less than 2 years
since the introduction of these datasets, there have been 40 submissions1 to CoQA leaderboard2 and 22
submissions1 to QuAC leaderboard3. Many of these models are unpublished, indicating active ongoing
research on these datasets. Besides, the current state-of-the-art in QuAC lags behind human performance
F1 benchmark by a margin of 6.71, suggesting significant scope for improvement. Almost simultane-
ously, there have been breakthroughs in NLP (Devlin et al., 2019; Radford et al., 2018; Liu et al., 2019a)
which the researchers have tried to leverage in their upcoming models (Qu et al., 2019b; Yeh and Chen,
2019; Chen et al., 2019). Since many models are being published concurrently, there have been in-
consistencies and/or overlap in their methodologies and research directions. This makes it difficult to
compare different approaches against each other and weigh their pros and cons. This prevailing scenario
has blurred the bigger picture and made it difficult for researchers to attend to novel research in this
field. Moreover, there is no singular summarized view on CMC models, except the individual literature
studies of these publications which can be highly localized and inconsistent with the global view. Thus,
the current scenario motivates the need for organizing the scattered knowledge across these publications
into a consolidated overview, so that future research in this field can be streamlined.

This literature review, therefore, provides a bird-eye overview of Conversational Machine Compre-
hension. We commence with an introduction to CMC, acquainting the reader with the challenges that
make CMC unique, and the large-scale conversational datasets that spurred research in this field. To
develop a general understanding of the CMC approaches, we shift the focus from comprehending indi-
vidual models to observing the common trends that mark these models, synthesizing a generic framework
for a CMC model in the process. We finally end our review with a discussion on the current trends and
suggest advancements in the future.

2 Related Work

There have been several published literature reviews on MRC in recent years. Gao et al. (2018) pro-
vides an extensive review of Conversational AI with a detailed account of the neural approaches being
employed in each of its dialog systems (QA, Task completion, and social chat). It briefly discusses the
problem of CMC and its datasets but does not comment upon the recent advancements and prevalent
approaches in this domain. Zhang et al. (2019) provides a summary of all the recent single-turn MRC
datasets and approaches, however, it briefly discusses CoQA but does not touch upon any approaches
for CMC. Qiu et al. (2019) summarizes the classic models of single-turn MRC with a focus on deriving
a common architecture and suggesting improvements based on the analysis. CMC is mentioned as an
emerging research direction in this survey. The latest review by Baradaran et al. (2020) provides an
overview of MRC along with the statistical analysis of datasets and the various problems in this domain.
It mentions CMC as an MRC challenge but does not provide any further details.

1Recorded as of July 1, 2020. Please note that many of these submissions are either ensemble versions of single models, or
hyper-parameter variants of their pre-published models or are simply unpublished. Therefore, unique published models’ count
is 13 in CoQA and 7 in QuAC.

2https://stanfordnlp.github.io/coqa/
3http://quac.ai/



2741

This review differs from its predecessors as it focuses primarily on Conversational (multi-turn) Ma-
chine Comprehension which has not been detailed in the previous literature. CMC has its own set of
challenges and an active research community around it. This calls for considering CMC as a separate
research direction from single-turn MRC and review its rapid developments in terms of its general trends.

3 What is Conversational Machine Comprehension?

The task of CMC is defined as: Given a passage P , the conversation history in the form of question-
answer pairs {Q1, A1, Q2, A2, ..., Qi−1, Ai−1} and a question Qi, the model needs to predict the an-
swer Ai. The answer Ai can either be a text span (si, ei) (Choi et al., 2018) or a free-form text
{ai,1, ai,2, ..., ai,j} with evidence Ri (Reddy et al., 2019). Single-turn MRC models cannot directly
cater to CMC, as the latter is much more challenging to address. The major challenges being:

• The encoding module needs to encode not only P and Ai but also the conversational history.

• General observation about information-seeking dialog in humans suggests that the starting dialog-
turns tend to focus on the beginning chunks of the passage and shift focus to the later chunks as
the conversation progresses (Choi et al., 2018). The model is thus expected to capture these focal
shifts during a conversation and reason pragmatically, instead of only matching lexically or via
paraphrasing.

• Multi-turn conversations are generally incremental and co-referential. These conversational dialogs
are either drilling down (the current question is a request for more information about the topic),
shifting topic (the current question is not immediately relevant to something previously discussed),
returning topic (the current question is asking about a topic again after it had previously been shifted
away from), clarification of topic, or definition of an entity (Yatskar, 2019). The model should,
therefore, be able to take context from history which may or may not be immediate.

4 Multi-Turn Conversational Datasets

The surge in CMC research is credited to the emergence of large-scale multi-turn conversational datasets:
CoQA (Reddy et al., 2019) and QuAC (Choi et al., 2018).

4.1 CoQA

Conversational QA (CoQA) dataset consists of 126k questions sourced from 8k conversations.

• Dataset preparation: Conversations are prepared over passages collected across 7 different do-
mains, each with its source dataset, such as news articles derived from CNN (Hermann et al., 2015).
Amongst the 7 domains, two are used for out-of-domain evaluation (only for evaluation, not train-
ing), while the other five aid in-domain evaluation (both training and evaluation). The dialog is
prepared in a two annotator setting with one questioning and another answering, both referring to
the entire context.

• Questions: Questions are factoid but require sufficient co-referencing and pragmatic reasoning
(Bell, 1999).

• Answers: Answers are free-form, with their corresponding rationale highlighted in the passage.
However, Yatskar (2019) identified that the answers are slightly modified versions of the rationale,
and therefore optimizing an extractive model to predict the answer span with maximum F1 overlap
to the gold answer can achieve up to 97.8 F1.

• Dialog features: The dialogs mostly involve drilling-down for details (about 60% of all questions)
but lack other dialog features like topic-shift, clarification, or definition.

• Evaluation: Macro-average F1 score of word overlap is used as an evaluation metric and is com-
puted separately for in-domain and out-of-domain.
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4.2 QuAC
Question Answering in Context (QuAC) contains 100K questions obtained from 14K information-
seeking dialogs.

• Dataset preparation: Dialogs are prepared over sections from Wikipedia articles about people from
different genres such as culture and wildlife. The dataset is prepared using an asymmetric setting,
with a student exposed only to the title of the article and a summary while the teacher is exposed
to the entire section of the article on which the dialog is to be based. The student, therefore, tries
to seek information about the hidden questions based on the limited information it gets from the
dialog, and the teacher answers by providing short excerpts from the section (or ‘No Answer’ if not
possible).

• Questions: Questions are descriptive, highly-contextual, and open-ended due to the asymmetric na-
ture of the dataset that prevents paraphrasing. They require sufficient co-referencing and pragmatic
reasoning.

• Dialog features: Besides drilling down, dialogs switch to new topics more frequently than CoQA.
The dataset though lacks definition or clarification dialogs.

• Answers: Answers are extractive and can be either Yes/No or ‘No Answer’. Besides extractive span,
the response also includes additional signals called dialog acts like continuation (follow up, maybe
follow up, or don’t follow up) and affirmation (yes, no, or neither), which provides additional useful
dialog flow information to train on, as used by Qu et al. (2019b) and Ju et al. (2019). Further, an
analysis of the answer token lengths in Table 1 shows that QuAC answers are longer, which can
be attributed to its asymmetric nature thereby motivating the seeker to ask open-ended questions to
gauge hidden text.

• Evaluation: Besides the macro-averaged F1 score on the entire set, QuAC also evaluates Human
Equivalence Score (HEQ) to judge system performance relative to an average human, by finding
the percentage of instances for which the system’s F1 matches or exceeds human F1. HEQ-Q and
HEQ-D are thus HEQ scores with the instances as questions and dialogs respectively.

General dataset characteristics and an example from each of the datasets are provided in Appendix A.

5 Generic Framework of a CMC Model

Gao et al. (2018) defined the steps for performing reading comprehension in a typical neural MRC model
as (1) encoding the questions and context into a set of embeddings in a neural space; (2) reasoning in
the neural space to identify the answer vector and (3) decoding the answer vector into a natural language
output. Huang et al. (2018a) adapted these steps in CMC by adding conversational history modeling.
Qu et al. (2019c) proposed a ConvQA model with separate modules for history selection and modeling.
Based on these prior works, we synthesize a generic framework for a CMC model. A typical CMC model
is provided with context C, current question Qi and the conversation history Hi = [{Qk, Ak}]i−1k=1, and
needs to generate an output set Oi. The CMC framework is provided in Fig. 1. There are four major
components of the framework, based on their contribution to the overall CMC flow.

1. History Selection module: With complicated dialog behaviors like topic shift or topic return
(Yatskar, 2019), simply selecting immediate turns may not work well. A history selection module,
therefore, chooses a subset H ′i of the history turns Hi based on a policy (dynamic or static) that is
expected to be more helpful than the others. If the history selection module is based on a dynamic
learned policy (e.g. Qu et al. (2019b)), then feedback from the other modules can guide its update.

2. Encoder: The lexical tokens of the context passage C, selected conversational turns H ′i, and the cur-
rent question Qi need to be transformed into input embeddings for the reasoning module. Encoder
facilitates this transition. The encoder steps may vary with every approach and reasoning inputs, at a
high level, encoding involves transformation and combination of context-independent word embed-
dings called lexical embeddings such as GloVE (Pennington et al., 2014), intra-sequence contextual
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Figure 1: Generic framework of a CMC model. A typical CMC model would consist of (1) History
selection module, that selects a subset H ′i of conversational history Hi relevant to the current question Qi;
(2) Encoder, that encodes the lexical tokens of context C, Qi and H ′i into input embeddings for contextual
integration layer; (3) Reasoning module, that performs contextual integration of input embeddings into
contextualized embeddings; and finally, (4) Output predictor, that predicts the output set Oi based on
contextualized embeddings.

embeddings e.g. ELMo (Peters et al., 2018), BERT (Devlin et al., 2019) or RNN, question-aware
embeddings, and additional feature embeddings like POS tags (Zhu et al., 2018), history embedding
(Qu et al., 2019c) or conversation count. Conversational history H ′i is generally integrated with this
module into any or all of the contextual input embeddings. This process is called History modeling
and is the most significant aspect of a CMC encoder.

3. Contextual Integration layer: Contextual information accumulated in the passage, query, and/or
history embeddings individually must be fused to generate query-aware and/or history-aware con-
textualized output embeddings. This process may involve a single layer (single-step reasoning) or
repetition across multiple layers (multi-step reasoning). Input for this module generally consists of
two (or more) sequence sets for every history turn, or aggregated across all turns, which are then
fused in each layer and often inter-weaved (Huang et al., 2018b) with attention.

4. Output Predictor: The model output may be in the form of a text span, signals like dialog acts
(Choi et al., 2018) or a free-form (abstractive) answer (Reddy et al., 2019). Contextual embeddings
generated by the reasoning module have all the latent information about the question, context pas-
sage, and conversational history. To get the token-level output, a fully-connected network followed
by a softmax layer is generally used for per-token probability (abstractive) or start/end probabil-
ity (extractive). Besides, a linear neural network may be used to find the aggregated result of the
sequence.

6 Common Trends across CMC models

Instead of describing each CMC model separately, we categorized them under the approaches they em-
ploy in their components (section 5) or other model characteristics. This will help in developing a
high-level understanding of the CMC models. A model-wise summary of the CMC models is provided
in Appendix C.

6.1 Trends in History Selection

Almost all of the current CMC models select conversational history based on a heuristic of considering
k immediate turns, often decided by performance such as BiDAF++ (Choi et al., 2018; Yatskar, 2019),
SDNet (Zhu et al., 2018), BiDAF++ w/ 2-ctx (Ohsugi et al., 2019) use last two turns as including the third
turn degrades performance. History Attention Mechanism (HAM) based model Qu et al. (2019b) uses
a dynamic history selection policy by attending over contextualized representations of all the previous
history turns at word-level or sequence-level and combining with current turn’s representation as shown
in Fig. 3a.
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6.2 Trends in History Modeling
How conversational history is integrated or used in the encoding process of contextual input embeddings
can be used to classify CMC models. Different trends observed in this respect are described below. Some
models may use a combination of these approaches.

1. Appending selected history questions and/or answers (in raw form or text span indices) to the
current question before encoding. QA tokens across turns should be distinguishable or sepa-
rated when appending. Models DrQA+PGNet (Reddy et al., 2019), SDNet (Zhu et al., 2018) and
RoBERTa + AT + KD (Ju et al., 2019) append all history QA pairs separated by tokens like sym-
bols [Q] or [A] such that new Q∗k = {[Q], Q1, [A], A1, ..., [Q], Qk−1, [A], Ak−1, [Q], Qk}. On the
other hand, QuAC baseline model BiDAF++ w/ 2-ctx (Ohsugi et al., 2019) and GraphFlow (Chen
et al., 2019) append only the history questions to the current question and encode relative dialog-
turn number within each question embedding to differentiate. Choi et al. (2018) validate that this
dialog-turn encoding strategy performs better in practice.

2. Encoding context tokens with history answer marker embeddings (HAE) before passing on for
reasoning. These embeddings indicate if the context token is present in any conversational history
answer or not, such as in BiDAF++ w/ 2-ctx (Choi et al., 2018), GraphFlow (Chen et al., 2019),
BERT+HAE (Qu et al., 2019a) and HAM (Qu et al., 2019b). HAM encodes a dialog-turn encoded
variant of HAE called Positional HAE. It maintains a lookup table of history embeddings for every
relative position from the current conversation and embeds the corresponding embedding if the
token is found in that history answer, e.g. for the current question qk if a token is found in history
answer ak−2 then Positional HAE embedding at index 2 is encoded, otherwise embedding at index
0 is encoded. This setting is illustrated in Fig. 3b.

3. Integrating intermediate representations generated in the reasoning modules of selected his-
tory conversation turns to grasp the deep latent semantics of the history, rather than acting on raw
inputs. This approach is also called the FLOW based approach. The models that follow this ap-
proach are FlowQA (Huang et al., 2018a), FlowDelta (Yeh and Chen, 2019), and GraphFlow (Chen
et al., 2019). GraphFlow encodes conversational histories into context graphs which are used by the
reasoning module for contextual analysis.

For contextual encoding, most of the models utilize one of the two types of encoders: (a.) Bidirectional
sequential language models such as BiDAF (Seo et al., 2017) or ELMo (Peters et al., 2018) (b.) Deep
bidirectional transformer-based models such as BERT (Devlin et al., 2019) or RoBERTa (Liu et al.,
2019b).

6.3 Trends in Contextual Reasoning
While every CMC model has its unique flavor in integrating encoded representations of the query, history,
and text contextually, some recurrent themes in reasoning can still be drawn. It is important to note that
some of these themes will reflect state-of-the-art techniques around their release, which may now be
obsolete. However, having their knowledge would prevent the re-exploration of those ideas. Following
are the commonly observed themes:

A. Attention-based Reasoning with Sequence Models
This was a common theme across MRC models until transformers (Vaswani et al., 2017) were introduced
and got rid of sequence modeling. Consequently, initial baseline models were based on this approach.
CoQA baseline (Reddy et al., 2019) first involves DrQA (Chen et al., 2017), which performs BiLSTM
based contextual integration over encoded tokens for extractive span, and later PGNet, that uses attention-
based neural machine translation (Bahdanau et al., 2015) for abstractive answer reasoning.
QuAC baseline (Choi et al., 2018) combines self-attention with BiDAF (Seo et al., 2017) that performs
reasoning via multi-layered bidirectional attention followed by multi-layered BiLSTM (BiDAF++).
SDNet (Zhu et al., 2018) applies both inter-attention and self-attention in multiple layers, interleaved
with BiLSTM, to comprehend conversation context.
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B. FLOW based approaches
Analogous to recurrent models which propagate contextual information through the sequence, FLOW
is a sequence of latent representations that propagates reasoning in direction of the dialog progression
by feeding intermediate latent representations, generated during reasoning in previous conversations,
into contextual reasoning for the current question. This helps to leverage the reasoning effort of previous
conversations as compared to using shallow history, such as directly appending history question-answers,
where important contextual information in conversations may be lost due to the overwhelming input.
There are two major flow-based approaches based on the propagated latent representation.

(a) Integration-Flow reasoning involves alternating compu-
tation between context integration (RNN over context) and
FLOW (RNN over question turns).

(b) FlowQA Architecture: Integration-Flow layers are alter-
nated using cross-attention between the context and the ques-
tion. Answer is predicted on the final concatenated output.

Figure 2: Illustration of the Integration-Flow based reasoning in FlowQA. Source : (Huang et al., 2018a)

1. Integration-Flow (IF): This mechanism uses contextualized embeddings as the propagated latent
representation. FlowQA (Huang et al., 2018a) which also introduced the idea of FLOW, involves
sequential processing along context tokens in parallel to the question turns followed by sequential
processing in direction of the question turns (Flow), in parallel to context tokens as illustrated in
Fig. 2a. FlowQA employs multiple IF layers interleaved with self and cross attentions to reason
over encoded embeddings (Fig. 2b). Recently released FlowDelta (Yeh and Chen, 2019) is an
improvement on the IF approach that uses the similar FlowQA architecture and achieves better
results. Instead of passing the latent representation directly, as in FlowQA, FlowDelta passes the
information gain (the difference between the latent representation of previous 2 layers) with the
intuition that information gain would allow the model to focus on more informative cues in context.

2. Integration-GraphFlow (IG): GraphFlow (Chen et al., 2019) claims that the IF mechanism does
not mimic human reasoning, as it first performs reasoning in parallel for each question, and then
refines the reasoning results across different turns. Therefore, they use dynamically constructed,
question-aware context graphs for each turn as the propagated latent representation. Processing
through this flow (called GraphFlow) is facilitated by applying GNNs (Li et al., 2016) on the current
context graph and previous context. To capture local interactions among consecutive words in
context before feeding to a GNN, a BiLSTM is applied for contextual Integration. GraphFlow
architecture alternates this mechanism with co-attention over the question and GNN output. This is
illustrated in the figure provided in Appendix B.

C. Contextual Integration using Pre-trained Language Models
Large-scale pre-trained LMs such as BERT (Devlin et al., 2019), GPT (Radford et al., 2018) and
RoBERTa (Liu et al., 2019b), have become the current state-of-the-art approaches for contextual rea-
soning in CMC models, with leaderboards of both datasets stacked with these models or their variants.
The approach is based on the fine-tune BERT-based MRC modeling outlined by Devlin et al. (2019),
in which question and context are packed together (with marker embeddings to distinguish) in an input
sequence to BERT that outputs contextualized question-aware embeddings for each input token.
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Using pre-trained models for reasoning is advantageous in two aspects: Firstly, it simplifies the ar-
chitecture by fusing encoding and reasoning modules into a single module. Secondly, it provides a
ready-to-tune architecture that abstracts out complex contextual interactions between query and context
while providing sufficient flexibility to control interactivity via augmentation of input embeddings i.e.
concatenation of special embeddings to input tokens that signal the model to incorporate a desirable
characteristic in contextualization.

(a) HAM uses a dynamic attention-based history selection
policy. Contextualized representations are generated by the
model’s encoder (BERT+PosHAE) for every history turn at
word and sequence levels. Sequence-level embeddings are
used to compute attention weights via scaled-dot product, and
aggregate representations are generated by a weighted com-
bination of embeddings of each turn in the proportion of their
attention weights. Thus, attention weights help in determin-
ing the degree of selection (relevance) of each history turn.

(b) HAM’s BERT based Encoder (Reasoning Architecture)
for every conversation turn. The encoder is provided with in-
put sequence consisting of query tokens (yellow) and context
tokens (green) separated by [SEP]. It outputs contextualized
representations Ti corresponding to aligned question/passage
tokens. The Token embeddings are augmented with segment
embeddings(to differentiate query and context), positional
embeddings (for distinct position in the sequence), and Po-
sitional HAE embeddings (for encoding history answer and
relative conversational turn).

Figure 3: Illustration of (a) history selection module and (b) encoder/reasoning module of History At-
tention Mechanism (HAM) model (Qu et al., 2019b).

However, incorporating history into these models is a key challenge in this approach as most of the
transformer models such as BERT only accept 2 segments ids in the input sequence. Based on recent
research in CMC, two main trends in solving the history integration issue are discussed below:

1. Modify the input embeddings for a single-turn MRC model to incorporate history. This is done
by either appending the entire conversation to the question, such as Ju et al. (2019) which uses
RoBERTa (Liu et al., 2019a) as the base model and truncates query if it exceeds the limit, or add
special embeddings to highlight conversational history for the model, such as HAE (Qu et al., 2019a)
embeds history answer embeddings with each context token if it is present in any of the history turns
(detailed in section 6.2). This approach does not effectively use the model to capture interactions
between every dialog-turn and context.

2. Use separate model for each conversational turn to capture one-to-one interaction between his-
tory and context, and merge the per-turn contextualized embeddings into aggregated history-aware
embeddings. Two models follow this trend. Ohsugi et al. (2019) uses BERT models to capture con-
textual interaction for every question (history and current) and answer (2N+1 sequences for N turns)
and concatenates all sequences together. Finally, it runs Bi-GRU (Cho et al., 2014) over the aggre-
gated sequence to capture inter-turn interactions before sending for prediction. On the other hand,
HAM (Qu et al., 2019b) ignores the history questions and uses the current question as a query with
positional History Answer Embeddings (section 6.2), thus generating one output sequence per con-
versation turn. Fig. 3b illustrates HAM encoder. The final sequence is generated using token-level
soft-attention based aggregation across all per-turn contextualized sequences.

6.4 Trends in Training Methodology
Due to the multi-output nature of both CoQA and QuAC, multi-task training is quite common amongst
CMC models, e.g. HAM (Qu et al., 2019b) uses multi-task learning over QuAC to also predict dialog
prediction and continuation acts, while GraphFlow (Chen et al., 2019) uses multi-task learning over
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CoQA to also predict question type. Besides, recently published (Ju et al., 2019) achieved state-of-
the-art results using RoBERTa, by applying multiple training techniques over CoQA. These consist of
rationale tagging multi-task learning (predict if the token exists in CoQA evidence), Adversarial Training
(Goodfellow et al., 2015), and Knowledge Distillation (Furlanello et al., 2018).

7 Discussion

How does the research progress in CMC, a constrained setup, benefit the more into-the-wild do-
main of Conversational Search? As stated by Qu et al. (2019a), Conversational QA (and CMC) is a
simplified setting of Conversational Search (ConvSearch), an information-seeking, “System Ask, User
Respond” paradigm (Zhang et al., 2018b), that does not focus on asking proactively. CMC, specifically,
tries to address the challenges of NLU, via contextual encoding, reasoning, and handling conversational
history, via history selection and modeling. In that aspect, CMC is a concrete enough setting for IR re-
searchers to understand the change of information needs and interactivity between conversational cycles.

Could Commonsense Reasoning improve CMC? Commonsense Reasoning (CR) is based on the set
of background information or world knowledge that an individual is intended to know or assume, and
may be missing from context. On the other hand, Pragmatic reasoning, which the current CMC models
cater to, is based on the derivation of explicit and implicit meanings within the context. The current
MRC systems are nearing human performance on most datasets, however, they still perform poorly on
single-turn CR based questions (Zhang et al., 2018a). While there is recently increasing interest in CR in
the single-turn MRC setting (Huang et al., 2019; Ostermann et al., 2018; Lin et al., 2017), CMC remains
relatively untouched. This may probably be due to the lack of foreknowledge requiring unanswerable
questions (e.g. in SQuAD 2.0 (Rajpurkar et al., 2018)) in current CMC datasets (Yatskar, 2019), suggest-
ing a need for more complex CMC datasets that incorporate CR. However, humans annotators may often
apply common-sense reasoning involuntarily while answering questions or comprehending, thus leaving
room for incorporating CR in models. There seems to be no recent work that invalidates, experimentally,
the role of CR in CMC. QuAC, for example, is drawn from articles on personalities, and current models
still lag behind the human benchmark. It may be worth experimenting if adding domain knowledge or
attributes about the context, like location and gender, help improve answering these questions.

Why did the paper focus on common trends across each component rather than a single overar-
ching classification of CMC models? The study of common trends in modeling, rather than a single
overarching classification, helped in providing a multi-faceted view of CMC that can generalize on future
models, and identify possible open-ended research questions, such as (a) For history selection, HAM (Qu
et al., 2019b) has proved to be both effective and intuitive in selecting relevant history turns. The appli-
cation of this history selection approach on previous techniques that considered immediate K turns could
be experimented with. (b) As mentioned in training methodology (section 6.4), RoBERTa-based CMC
model (Ju et al., 2019) that used knowledge distillation and adversarial training achieved state-of-the-art
CoQA results (Reddy et al., 2019). This suggests that different training approach along with multi-task
learning improves the performance of base models. These procedures could be experimented with more
advanced models such as HAM (Qu et al., 2019b) and FlowDelta (Yeh and Chen, 2019).

8 Conclusion

In this paper, we provide a holistic overview of Conversational Machine Comprehension (CMC), which
has seen a surge of research in recent years, owing to advancements in neural language modeling and the
introduction of large-scale conversational datasets such as CoQA (Reddy et al., 2019) and QuAC (Choi
et al., 2018). We discuss the challenges that make CMC different from machine reading comprehension
(MRC) and compare the multi-turn conversational datasets: CoQA and QuAC, based on different CMC
characteristics. To develop a high-level understanding of all the existing approaches to tackle CMC, we
synthesize a general model framework and analyze the common trends across all the published models,
loosely based on the components outlined in the framework. Finally, we discuss some open questions
that emerged during our research and which, in our view, can be explored further. This review could
serve as a compendium for researchers in this domain and help streamline research in CMC.
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A General statistics for CoQA and QuAC

The dataset statistics are provided in Table 1. An example from both datasets is provided in Fig. 5

Characteristic (average) CoQA QuAC
Dataset source Passages collected from 7 diverse do-

mains e.g. children stories from
MCTest, news articles from CNN,
Wikipedia articles, etc.

Sections from Wikipedia articles filtered in the “peo-
ple” category associated with subcategories like cul-
ture, animal, geography, etc.

Conversation setting Questioner-Answerer setting where
both have access to the entire context.

Teacher-Student setting where the teacher has access
to the full context for answering, while the student
has only the title and summary of the article.

Question type factoid. open-ended, highly contextual.
Answer type free-form with an extractive rationale. Extractive span which can be yes/no or ‘No An-

swer’. It also provides dialog acts.
Total number of dialogs 8K 14K
Total number of questions 126K 100K
Context, Question and
Answer token lengths

271, 5.5, 2.7 401, 6.5, 14.6

Turns per dialog 15.2 7.2
Unanswerable questions Very low and often erroneously

marked.
Significant quantity of type ’missing info’

Evaluation metrics F1 scores for in-domain, out-of-
domain and overall

F1, Human Equivalence Quotient (HEQ) scores at
question and dialog levels.

Table 1: A comparison of the multi-turn conversational datasets- CoQA (Reddy et al., 2019) and QuAC
(Choi et al., 2018) based on different characteristics defined in their papers and the analysis paper by
Yatskar (2019).

B GraphFlow

Figure 4: Architecture of the Reasoning Layer of GraphFlow. Context graph-based flow sequence is
processed using GNNs and alternated with bi-LSTM and co-attention mechanisms. Source : (Chen et
al., 2019)



2752

(a) A QA dialog example in the CoQA dataset. Ev-
ery dialog is based on a context and each turn of the
dialog contains a question (Qi), an answer (Ai) and a
rationale (Ri) that supports the answer. There is suf-
ficient co-referencing between dialog turns as seen in
this example – ‘Where’ in Q2 follows on the candida-
ture mentioned in Q1, ‘his’ in Q4 points to A3, ‘he’ in
Q5 references A4, and ‘them’ in Q6 refers to people
mentioned in both A3 and A4. Source: (Reddy et al.,
2019)

(b) A QA dialogue example from the QuAC dataset. Dialogs are
prepared in a student-teacher setting over a section of a Wikipedia
article, where the student questions based on the title, background,
and start of the context and the teacher responds to the questions in
the form of text spans from the context and dialogue acts. Dialog
acts include follow-up i.e. whether the questioner should, could
or should not cross-question, and, affirmation i.e. if the question
can be answered as Yes/ No, or NA if it’s not a yes/no kind of
question. A ‘No Answer’ token is appended to the context which
is expected to be selected by the model in the case of unanswerable
questions. The questions are open-ended due to the asymmetric
nature of dataset. There is also sufficient co-referencing – ‘she’ in
Q3 refers to the protagonist and is a succession of Q2, similarly Q7

is a follow-up on Q5, ‘it’ in Q6 refers to song mentioned in A5.
Source: (Choi et al., 2018)

Figure 5: Illustrative examples from the conversational datasets– CoQA and QuAC.

C A summary of the common CMC models

The following tables provide a summary of the CMC models published on the CoQA2 and QuAC3

leaderboards 4. The table also provides a link to the official code repositories for the models. Although
most of the models are published on both leaderboards, some models are very specific to one of the
datasets.

4Summarized as of July 1, 2020. Please note that the summary is only available for models that have an attached manuscript
or repository.
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