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Abstract

Short text classification is a fundamental problem in natural language processing, social network
analysis, and e-commerce. The lack of structure in short text sequences limits the success of
popular NLP methods based on deep learning. Simpler methods that rely on bag-of-words repre-
sentations tend to perform on par with complex deep learning methods. To tackle the limitations
of textual features in short text, we propose a Graph-regularized Graph Convolution Network
(GR-GCN), which augments graph convolution networks by incorporating label dependencies
in the output space. Our model achieves state-of-the-art results on both proprietary and exter-
nal datasets, outperforming several baseline methods by up to 6% . Furthermore, we show that
compared to baseline methods, GR-GCN is more robust to noise in textual features.

1 Introduction

Short-text classification is a common problem in information retrieval (Ji et al., 2014) and has applica-
tions in several domains including e-commerce (Yu et al., 2012; Shen et al., 2009), social media (Kateb
and Kalita, 2015), healthcare (Pestian et al., 2007) and cognitive-biometric recognition (Pokhriyal et al.,
2016). In this paper, we develop a short text classification technique for solving two problems relevant to
product search on e-commerce platform: 1) Product Query Classification (PQC) - When the customer
enters a free form query, it is important to understand their product type intent to recommend and adver-
tise the relevant products. We classify customer search queries to one or more product types (e.g., shoe,
televisions, skis), and 2) Product Title Classification (PTC) - We classify billions of product titles to
one or more product categories. This is important for sellers to place their items in the correct product
category and retrieve it when a customer queries it.

Unlike traditional text classification, classifying short-texts poses additional challenges. First, short
texts in e-commerce typically involve sentences with an average length of 3 (for queries) to 15 words
(for product titles). Second, unlike longer texts such as blogs or news articles, these customer queries or
product titles lack “natural” language structure and are often plagued with spelling errors. For example,
in PQC, queries like Nike running, shoes size 9, nike shos (misspelling variants) all
belong to the shoes category. In addition, queries contain non-target language text and non-language
text (like model/part numbers), which introduces noise in the embedding. A similar challenge could also
be faced in PTC problem, where products from the same class have high diversity in their title texts.
For example, titles PhotoFast microSD to MS Pro Duo CR-5300, Kingston microSD
Card and 8GB card for Blackberry Storm 9530 all belong to the same genre of microSD
card products and hence need to be listed under the same category. All these factors make it difficult to
separate product-type classes by purely relying on text which is heterogeneous and contains noise.

In this work, we propose to enhance the textual information by leveraging additional knowledge about
relationships between input short-texts as well as among class labels. For PQC, we can derive similarities
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between input user queries from (anonymized) user logs, by looking at commonly purchased items in
response to different queries. The intuition is that two queries that consistently lead to the purchase of a
same set of items might have similar product-type intents. Likewise, in PTC, we can estimate similarity
between two input product titles from historical information such as co-views. Similarly, in output space,
relationships between product-type classes can be modeled using product-category taxonomies, which
are typically hand-curated and readily available in e-commerce applications.

Such auxiliary information can be naturally represented in graphical form, where each node repre-
sents a short-text (input graph) or a class label (output graph), while an edge indicates magnitude of
similarity between two nodes. We thus propose a Graph-regularized Graph Convolution Network (GR-
GCN) approach, which augments the graph convolutional network (Tayal et al., 2019) to incorporate
such graphical information in an end to end learning framework. The two key aspects of GR-GCN are:
i) a GCN that leverages dependencies in the input space to learn more informative representations of
nodes(input short texts), and ii) a graph-regularization (GR) term in the objective function that exploits
label similarities to penalize contrasting predictions for similar class labels on each input sample, thereby
restricting the solution space and making our approach more robust to noise in the data.

We perform extensive experiments on one proprietary, and two public datasets and demonstrate the
improvement in classification accuracy for GR-GCN upto 6% compared to text-based baselines. Further,
we add noise in the input data and show that the graph’s presence makes our method more robust to noise
as compared to baseline methods based on just textual features.

2 Proposed Approach

Let X ∈ Rn×d be a matrix with each row being the embedding vector of an input sample and Y ∈ Rn×L
be the label indicator matrix. Here d is the dimension of embedding and L number of class labels. Let
GI = (VI , EI) be the graph on input samples, with a corresponding adjacency matrix AI ∈ Rn×n,
ĀI = AI + I . Let Go = (Vo, Eo) be the graph in output space, with Ao ∈ RL×L being the adjacency
matrix on the output labels.

Figure 1: Schematic Illustration of GR-GCN. The GCN is used to learn node representations that
respect the input graph structure, while the graph regularization is used to learn representations
that respect the output graph structure.

Figure 1 illustrates our approach: GR-GCN. In this work, we use a 2-layer GCN (Kipf and Welling,
2016) on GI . The parameters are learnt by miniminizing the GR-GCN loss function: LGCN + λLGR,
where LGCN := L(fθ(x), y) is the cross-entropy loss between the GCN predictions fθ(x) for node x,
parameterized by θ and the ground truth y. LGR :=

∑
i,j∈Eo ‖fθ(xi)− fθ(xj)‖

2 is the graph Laplacian
based regularization that acts on the output node representations, and forces the predictions of adjacent
nodes in the output graph to be similar. As we demonstrate in the experiments, this additional regular-
ization makes our model especially robust to noise. Regularizers of the form LGR have shown to be
successful in factorization models (Johnson and Zhang, 2007; Rao et al., 2015; Zhou et al., 2012), and
to the best of our knowledge, we are the first to apply it to regularize the output space for GCNs.
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3 Graph Construction

Table 1: Summary statistics of datasets

Dataset #Docs #Training #Test #Unique Words #Edges #Class Average Length

Internal 200000 160000 40000 41880 3642910 2290 3.38
Electronics 188626 150,900 37,726 291,804 962,444 796 14.23

Home 279788 223,830 55,958 176,754 6549,740 1100 9.63

In this section, we discuss the construction of graphs in input space and output space in the context of
the two application problems that we focus on in this paper.

3.1 Product Query Classification (PQC):

The goal of PQC is to predict the product-type intent of user-typed search queries on an e-commerce
website. To create the input graph, we use anonymous user logs that hold knowledge about query as-
sociation. Intuitively, any two queries leading to the purchase of same items are more likely to have
similar product-type intent. Following the intuition, we construct the graph such that for any two queries
i and j, the adjacency matrix AI is constructed as Aij = number of common purchases between query
i and query j. To construct the output graph between product labels , we first represent each label (prod-
uct category) with the mean of embeddings of the titles of products that belong to this category. We then
apply cosine similarity between embedding vectors of labels to construct the output graph, and discard
edges that do not meet the threshold.

3.2 Product Title Classification (PTC):

The goal of PTC is to classify products into product categories. Specifically, each input sample is the
title of a product, while the output label is a product category. To construct graph GI , we use the co-
viewed metadata of each product. Specifically, for two product titles i and j, the input matrix AI is
constructed as Aij = number of co-view between title i and title j. As with PQC problem, we used
the same procedure to obtain the output space graph between labels. Co-views, is an intuitive means
to construct the input graph, since items that are co-views are typically substitutes of each other. Thus,
neighbors on the co-view graph tend to have similar categorization.

4 Experiments and Results

Table 2: Classification accuracy of GR-GCN compared to multiple base-
lines

Model Internal Electronics Home

TF-IDF + LR (Salton and Buckley, 1988) 80.9 59.70 61.2
CNN-rand (Kim, 2014) 79.45 55.87 61.42

CNN-non-static (Kim, 2014) 82.75 58.75 64.19
CharCNN (Zhang et al., 2015) 80.36 61.72 63.18

LSTM (Gers et al., 1999) 80.35 60.09 61.3
Bi-LSTM (Graves and Schmidhuber, 2005) 81.38 60.19 61.00

fastText (Joulin et al., 2016) 83.67 61.4 64.03
Graph-CNN-C (Defferrard et al., 2016) 80.08 58.60 59.25

Text GCN (Yao et al., 2019) 80.25 61.77 65.31
SWEM (Shen et al., 2018) 86.86 62.85 64.81

GR-GCN 92.10 64.63 67.85

We evaluate GR-GCN
approach on three datasets
described in Table 1. For
PQC, we used a proprietary
e-commerce dataset (re-
ferred to as Internal dataset
henceforth), whereas for
PTC problem, we used a
publicly available dataset
consisting of Amazon
product titles and other
metadata including co-
views for two departments:
Electronics and Home &
Kitchen (referred to as
Home in this paper). (He and McAuley, 2016) 1.

1http://jmcauley.ucsd.edu/data/amazon/links.html



239

All pre-trained word embeddings are 128-d learned by training FastText (Bojanowski et al., 2017;
Joulin et al., 2016). For GR-GCN, we used a 2-layer GCN with learning rate 0.1, dropout set to 0.1 and
L2 regularization factor λ of 1e−7. All the datasets are split into 70 % training, 10% validation, and 20
% testing.

4.1 Baselines :

The following are brief descriptions of the baselines in the comparative study. We have grouped our
baselines into three categories i.e., Text Models (text features only), Graph Models (graph relation infor-
mation only), and Text + Graph Models (uses both textual and graph information).

Text Models: TF-IDF+LR: Bag-of-words model with TF-IDF as feature and Logistic Regression as
a classifier. Low-frequency words appearing less than 5 times were removed. CNN: Two variants of
CNN proposed in (Kim, 2014) are used: i) CNN-rand uses randomly initialized word embeddings and,
ii) CNN-non-static uses pre-trained word embeddings. CharCNN: Character-level CNNs as proposed
in (Zhang et al., 2015) LSTM: A simple LSTM block with 256 hidden states. We input pre-trained word
embeddings. Bi-LSTM: Bidirectional LSTM block with 256 hidden states. We input pre-trained word
embeddings. fastText: text classification tool from facebook (Joulin et al., 2016). It averages words
embedding, then feeds into a linear classifier. SWEM: employing average pooling operation (Shen et
al., 2018) of feature and afterwards using feed forward network with architecture 256-512-1024-C as
classifier, where C is the number of classes.

Graph Models: Graph-CNN-C: CNN model that performs convolutions across word embeddings
relation graph using Chebyshev filter (Defferrard et al., 2016)

Text+Graph Models: Text GCN: GCN model where we construct corpus graph using documents and
word as nodes (Yao et al., 2019).

4.2 Quantitative Results

For all baselines, we used default parameters as in their original paper/implementation. The results are
summarized in Table 2. GR-GCN can be seen to outperform all baseline models in classification accuracy
by a margin of 6% for the Internal dataset, 2.8% on Electronics and 3.8% on Home dataset. Further, we
make the following observations from our results: 1) A simple model, TF-IDF + LR performs well on
short text datasets beating CNN random on internal and electronics datasets and performing comparably
on home dataset. This reinforces our observation that short text documents often lack the structure
that complex models such as neural networks can capture, and in some cases, using the latter might
over parameterized the problem. 2) LSTM based methods that use pre-trained embeddings also do not
perform better than TFIDF based methods, for a similar reason: the word order is seldom important in
user typed queries and product titles, and there’s no “natural language” structure to exploit. 3) TextGCN
shows competitive performance on Electronics and Home dataset but performs poorly on the internal
dataset. This is because the texts in the internal dataset are super short, with an average length below 4,
contain many spelling errors, and the label space is vast. On further examination, we noticed that due
to spelling errors, TextGCN is creating a lot of spurious nodes in the graph, which is a limitation of the
learning graph from the corpus.

4.3 Impact of Incorporating Auxiliary Graphs

Model Internal Electronics Home

SWEM 86.86 62.85 64.81
GR-GCN 92.10 64.63 67.85

SWEM-GR-out 86.90 63.26 65.20
GR-GCN-inp 91.95 63.99 66.9

Table 3: Performance Comparison

To evaluate the effect of each graph (input and
output) individually on model performance, we
perform two more experiments. In first ex-
periment we incorporate output graph to the
best ”Text” performance model in our baselines
(SWEM) and measure the performance. We re-
fer to this model as SWEM-GR-out. In the sec-
ond experiment, we only use the input graph,
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thus eliminating the graph regularization. We
refer to this model as GR-GCN-inp. Results are summarized in Table 3. We observe that both input
and output graphs in their individual capacity are adding meaning to the classification accuracy.

4.4 Robustness comparison
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Figure 2: Test accuracy by varying standard deviation of added noise (best seen in color). GR-GCN
consistently outperforms the baselines.

Search queries on e-commerce platforms contain a lot of misspelled keywords that introduce noise
in the embedding. To simulate this behavior in our model, we evaluate the robustness of GR-GCN
by introducing Additive White Gaussian Noise with zero mean and varying standard deviations in our
embedding(Zhang and Yang, 2018). Figure 2 reports test accuracy with varying standard deviation (σ)
of the noise. We compare GR-GCN with two text-base baselines: TF-IDF+LR, a simple bag of words
model and SWEM (Shen et al., 2018), a state of the art deep learning model. We see test performance of
TF-IDF + LR, and SWEM drops immediately with minimal noise, while GR-GCN is robust to noise. On
Internal dataset with σ = 0.05, TF-IDF performance drops to 12%, SWEM performance drops to 67%,
while GR-GCN performance dropped to 87%. We attribute this noise-tolerant feature to the presence of
input and output graph, which other methods lack.

4.4.1 Effect of the size of the Labelled Data
To assess the impact of the size of the labeled data, we tested the top-performing models with varying
proportions of the training data. Figure 3 reports test accuracy with various sized subsamples of the
training datasets. We observe that GR-GCN can achieve higher test accuracy with limited labeled doc-
uments. For example, with just 20% training data, GR-GCN achieves 87 % accuracy on the Internal
dataset, surpassing all other baselines that are trained on 100 % training data.
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Figure 3: Test accuracy by varying training data (best seen in color).

5 Conclusion

In this paper, we propose GR-GCN to classify short texts that capture dependency on two levels, i.e.,
within the text samples (input space graph) and amongst the output label (output space graph). We
demonstrated its efficacy on two commercial e-commerce applications and its robustness to noise.

We note that the proposed method can add value to other domains like medical science, where the
input graph can capture drug similarity, and the output graph can capture the relationship among various
types of illness; remote sensing, where the input graph can capture the distance, depth etc. between
different ground points and output graph can capture similarity between similar labels such as pasture
and vegetation as well as distinguish between entirely different labels such as river and residence.
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