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Abstract 

During sentence comprehension, humans adjust word meanings according to the combination 
of the concepts that occur in the sentence. This paper presents a neural network model called 
CEREBRA (Context-dEpendent meaning REpresentation in the BRAin) that demonstrates this 
process based on fMRI sentence patterns and the Concept Attribute Representation (CAR) the-
ory. In several experiments, CEREBRA is used to quantify conceptual combination effect and 
demonstrate that it matters to humans. Such context-based representations could be used in fu-
ture natural language processing systems allowing them to mirror human performance more 
accurately. 

1   Introduction 

A word meaning is more than an entry in a dictionary. It involves a vast amount of knowledge relating 
the scenes and experiences people encounter (i.e., a rich encyclopedic knowledge), a set of referents to 
which the word properly applies (i.e., the boy was angry vs. the chair was angry), combination of other 
words, and grammatical constructions in which the word occurs. The meaning of the word varies from 
situation to situation and across contexts of use. For example, the word small means something different 
when used to describe a mosquito, a whale, or a planet. The properties associated with small vary in 
context-dependent ways: It is necessary to know what the word means, but also the context in which is 
used, and how the words combine in order to construct the word meaning (Medin & Shoben, 1988).  

While humans have a remarkable ability to form new word meanings by combining existing concepts, 
modeling this process is challenging (Hampton, 1997; Janetzko 2001; Middleton et al, 2011; Murphy, 
1988; Sag et al., 2002). The same concept can be combined to produce different meanings: corn oil 
means oil made of corn, baby oil means oil rubbed on babies, and lamp oil means oil for lighting lamps 
(Wisniewski, 1997, 1998). Since lamp is an object, oil is likely to be a member of the inanimate category. 
However, corn and baby are living things, which suggest otherwise. How do language users determine 
the membership structure of such combinations of concepts, and how do they deduce the interpretation? 
As this example illustrates, there is no simple rule on how to combine concepts (Cohen et al., 1984).  

Computational models of such phenomena could potentially shed light into human cognition and 
advance AI applications that interact with humans via natural language. Such applications need to be 
able to understand and to form by themselves novel combinations of concepts. Consider for example 
virtual assistants such as Siri, OK Google, or Alexa. These applications are built to answer questions 
posed by humans in natural language. All of them have natural language processing software to 
recognize speech and to give a response. However, whereas humans process language at many levels, 
machines process linguistic data with no inherent meaning. Given the ambiguity and flexibility of human 
language, modeling human conceptual representations is essential in building AI systems that interact 
effectively with humans.   

Today’s experimental methods allow studying neural mechanisms underlying the semantic memory 
system. Neuroimaging (fMRI) technology, for instance, provides a way to measure brain activity during 
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word and sentence comprehension. When humans listen or read sentences they use different brain 
systems to simulate seeing the scenes and performing the actions that are described. As a result, parts of 
the brain that control these actions light up in the fMRI. Hence, semantic models have become a popular 
tool for prediction and interpretation of brain activity.  

Recently, Machine Learning systems in vision and language processing have been proposed based on 
single-word vector spaces (Mikolov et al., 2013; Vinyals et al., 2015). They are able to extract low-level 
features in order to recognize concepts (e.g. cat), but such representations are shallow and fall short from 
symbol grounding (meaning). In general, these models build semantic representations from text corpora, 
where words that appear in the same context are likely to have similar meanings (Baroni et. al., 2010; 
Burgess, 1998; Devlin et al., 2018; Harris, 1970; Landauer & Dumais, 1997; Mikolov et al., 2013 Peters 
et al., 2018;). This problem has driven researchers to develop new componential approaches where 
concepts are represented by a set of basic features, integrating different modalities like textual and visual 
inputs. (Anderson et al., 2019; Bruni et al., 2012; Silberer & Lapata, 2014, Vinyals et. al., 2015). 
However, even with these multimodal embedding spaces, such vector representations lack intrinsic 
meaning, and therefore sometimes different concepts may appear similar.  

A truly multimodal representations should account for the full array of human senses (Bruni et al., 
2014). Embodiment theories of concept representation provide such an array (Barsalou, 1987; Binder et 
al., 2009; Landau et al., 1998; Regier, 1996). They allow for a direct analysis in terms of sensory, motor, 
spatial, temporal, affective, and social experience. Further, these theories can be mapped to brain 
systems. Recent fMRI studies helped identify a distributed large-scale brain network of multimodal 
sensory systems linked to the storage and retrieval of conceptual knowledge (Binder et al., 2009). This 
network was then used as a basis for Concept Attribute Representation (CAR) theory (a.k.a. the 
experiential attribute representation model). This theory is a semantic approach that represents concepts 
as a set of features that are the basic components of meaning, and grounds them in brain systems (Binder 
et al., 2009, 2011, 2016a, 2016b). 

An intriguing challenge to semantic modeling is that concepts are dynamic, i.e. word meaning 
depends on context and recent experiences (Barsalou et al., 1993; Pecher et al., 2004; Yee et al., 2016). 
For example, a pianist would invoke different aspects of the word piano depending on whether he will 
be playing in a concert or moving the piano. When thinking about a coming performance, the emphasis 
will be on the piano’s function, including sound and fine hand movements. When moving the piano, the 
emphasis will be on shape, size, weight and other larger limb movements (Barclay et al., 1974).  

This paper addresses the challenge of dynamic representations based on CAR theory. The assumption 
is that words in different sentences have different representations. Therefore, different features in CARs 
should be weighted differently depending on context, that is, according to the combination of concepts 
that occur in the sentence. A neural network model is used to map brain-based semantic representations 
of words (CARs) into fMRI data of subjects reading everyday sentences. The goal is to identify how the 
weightings of the attributes in the CARs change to account for context (Aguirre-Celis & Miikkulainen, 
2017, 2018, 2019, 2020). In this paper, the CAR theory is first reviewed, and the sentence collection, 
fMRI data, and word representation data described. Then, the computational model is presented followed 
by three evaluation studies: an individual example on the conceptual combination effect on word 
meanings, an aggregate study across the entire corpus of sentences, and a behavioral analysis to evaluate 
the neural network model. 

2   Modeling Framework 

To understand how word meanings change under the context of a sentence, three issues are addressed: 
(1) How are concepts represented? Componential theories of lexical semantics assume that concepts 
consist of a set of features that constitute the basic components of meaning. CAR theory represents such 
features in terms of known brain systems, relating semantic content to systematic modulation in 
neuroimaging activity. (2) How do word meanings change in the context of a sentence? A word is broken 
into various features that can become active at different rates in different situations. According to CAR 
theory, the weights given to different feature dimensions are modulated by context. (3) What tools and 
approaches can be used to quantify such changes? CAR theory assumes that context modifies the 



119

baseline meaning of a concept. A computational model can test this assumption by using sentence fMRI 
patterns and the CAR semantic feature model to characterize how word meanings are modulated within 
the context of a sentence. The first two issues are addressed by the CAR theory. The third issue is ad-
dressed by CEREBRA, or Context-dependent mEaning REpresentation in the BRAin, a neural network 
model based on CAR theory.  

2.1   Concept Attribute Representation (CAR) Theory 

CAR theory is a semantic approach that represents concepts as a set of features that are the basic 
components of meaning (Anderson et al 2016, Binder, 2016a; Smith et al, 1974). They are composed of 
a list of well-known modalities that correspond to specialized sensory, motor and affective brain 
processes, systems processing spatial, temporal, and casual information, and areas involved in social 
cognition. The features directly relate semantic content to systematic modulation of neuroimaging 
activity. This theory has been mostly applied to the task of prediction of neural activity patterns for 
individual concepts and entire sentences (Anderson et al., 2016, 2017, 2018, 2019; Binder et al., 2009, 
2011, 2016a, 2016b, Fernandino et al., 2015).  

Each word is modeled as a collection of 66 features that captures the strength of association between 
each neural attribute and word meaning. Furthermore, the degree of activation of each attribute 
associated with the concept can be modified depending on the linguistic context, or combination of 
words in which the concept occurs. Thus, people weigh concept features differently to construct a 
representation specific to the combination of concepts in the sentence.  

Figure 1 shows the weighted CARs for the generic representation of the concept bicycle. The weight 
values represent average human ratings for each feature. For a more detailed account of this theory see 
Binder et al. (2009, 2011, 2016a, and 2016b). 

 
Figure 1: Bar plot of the 66 semantic features for the word bicycle (Binder et al., 2009, 2011, 2016a,2016b). It has 
low weightings on animate attributes such as Face, Body, and Speech, and emotions including Sad, and Fear and 
high weighting on attributes like Vision, Shape, Touch, and Manipulation. Similarly, it includes high weightings 
in Motion, Fast, Lower Limb and Path, since bicycle is considered a vehicle. CARs for bicycle. 

2.2   Data Collection and Processing 

The CEREBRA model is based on the following sets of data: A sentence collection prepared by Glasgow 
et al. (2016), the semantic vectors (CAR ratings) for the words obtained via Mechanical Turk, and the 
fMRI images for the sentences, the last two were collected by the Medical College of Wisconsin (An-
derson et al., 2016; Binder et al., 2016a, 2016b). Additionally, fMRI representations for individual words 
(called SynthWord) were synthesized by averaging the sentence fMRI. 
Sentence Collection: A total of 240 sentences were composed of two to five content words from a set 
of 242 words (141 nouns, 39 adjectives and 62 verbs). The words were selected toward imaginable and 
concrete objects, actions, settings, roles, state and emotions, and events. Examples of words include 
doctor, boy, hospital, desk, red, flood, damaged, drank, agreement, happy, hurricane, summer, chicken, 
and family. An example of a sentence containing some of those words is The flood damaged the hospital. 
Semantic Word Vectors: The 242 words (CAR) ratings were collected through Amazon Mechanical 
Turk (Anderson et al., 2016; Binder et al., 2016a). In a scale of 0-6, the participants were asked to assign 
the degree to which a given concept is associated with a specific type of neural component of experience 
(e.g. “To what degree do you think of a bicycle as having a fixed location, as on a map?”). Approximately 
30 ratings were collected for each word. After averaging all ratings and removing outliers, the final 
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attributes were transformed to unit length yielding a 66-dimensional feature vector (Figure 1). In this 
manner, the representations map the conceptual content of a word to the corresponding neural 
representations, unlike other systems where the features are extracted from text corpora and the meaning 
is determined by associations between words and between words and contexts (Burgess, 1998; Landauer 
& Dumais, 1997; Mikolov et al., 2013).  
Neural fMRI Sentence Representations: To obtain the neural correlates of the 240 sentences, subjects 
viewed each sentence on a computer screen while in the fMRI scanner. The sentences were presented 
word-by-word using a rapid serial visual presentation paradigm, with each content word exposed for 
400ms followed by a 200ms inter-stimulus interval. Participants were instructed to read the sentences 
and think about their overall meaning. 

Eleven subjects took part in this experiment producing 12 repetitions each. The fMRI data were pre-
processed using standard methods. The transformed brain activation patterns were converted into a 
single-sentence fMRI representation per participant by taking the voxel-wise mean of all repetitions 
(Anderson et al., 2016; Binder et al., 2016a, 2016b). Due to noise inherent in the neural data, only eight 
subject fMRI patterns were used for this study. To form the target for the neural network, the most 
significant 396 voxels per sentence were then chosen (to match six case-role slots of the content words 
consisting of 66 attributes each) and scaled to [0.2..0.8].  
Synthetic fMRI Word Representations: The neural data set did not include fMRI images for words in 
isolation. Therefore a technique developed by Anderson et al. (2016) was adopted to approximate them. 
The voxel values for a word were obtained by averaging all fMRI images for the sentences where the 
word occurs. These vectors, called SynthWords, encode a combination of examples of that word along 
with other words that appear in the same sentence. Thus, the SynthWord representation for mouse ob-
tained from sentence 56:The mouse ran into the forest and sentence 60:The man saw the dead mouse 
includes aspects of running, forest, man, seeing, and dead, altogether. Due to the limited number of 
sentences, some of SynthWords became identical and were excluded from the dataset. The final 
collection includes 237 sentences and 236 words (138 nouns, 38 adjectives and 60 verbs). 

3   Computational Model 

CEREBRA model was developed to investigate how words change under the context of a sentence using 
imaging data (Figure 2). It is based on the CAR semantic feature model and the FGREP neural network 
architecture (Forming Global Representations with Extended Backpropagation; Miikkulainen & Dyer, 
1991). The model is trained to predict fMRI patterns of subjects reading everyday sentences. The 
FGREP mechanism is used to determine how the CARs would have to change to predict the fMRI 
patterns more accurately. These changes represent the effect of context; it is thus possible to track the 
brain dynamic meanings of words by tracking how the CARs feature-weightings change across contexts. 

More specifically, the model is first trained to map CARWords (word attribute ratings) to SynthWords 
(fMRI synthetic words). Once it has learned this task, it is used to modify CAR words in context. 
SynthWords are combined to form SynthSent for the predicted sentence by averaging all words in the 
sentence. The SynthSent is then compared to the actual fMRISent (original fMRI data), to form a new 
error signal. That is, for each sentence, the CARWords are propagated and the error is formed as before, 
but during backpropagation, the network is no longer changed. Instead, the error is used to change the 
CARWords themselves (which is the FGREP method; Miikkulainen & Dyer 1991). This modification 
can be carried out until the error goes to zero, or no additional change is possible (because the CAR 
attributes are already at their max or min limits). Eventually, the revised CARWord represents the word 
meaning in the current sentence. 

The CEREBRA model was trained 20 times for each of the eight fMRI subjects with different random 
seeds. A total of 20 different sets of 786 context  word representations (one word representation for each 
sentence where the word appears) were thus produced for each subject. Afterwards, the mean of the 20 
representations was used as the final representation for each word (per subject). It is important to 
emphasize that the goal of the CEREBRA model is not to predict the fMRI patterns as accurately and 
generally as possible, instead, it is used as a framework to identify and measure context-dependent 
changes in the CAR words (Aguirre-Celis & Miikkulainen, 2017, 2018, 2019, 2020). 
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Figure 2: The CEREBRA model to account for context effects. After the model has been trained to map CARWords 
to SynthWords, it is used to determine how CAR words change in context. (1) Propagate CARWords to 
SynthWords. (2) Construct SynthSent by averaging the SynthWords into a prediction of the sentence. (3) Compare 
SynthSent with the observed sentence fMRI. (4) Backpropagate the error with FGREP for each sentence, freezing 
network weights and changing only CARWords. (5) Repeat until error reaches zero or CAR components reach 
their upper or lower limits. Thus, the CEREBRA model captures context effects by mapping brain-based semantic 
representations to fMRI sentence images. 

4   Experiments and Results 

To evaluate the performance of CEREBRA as well as the context-based representations, two computa-
tional experiments and a behavioral analysis were conducted. The first two experiments measure how 
the CAR representation of a word changes in different sentences, and correlates these changes to the 
CAR representations of the other words in the sentence (OWS). The behavioral study evaluates the 
CEREBRA context-based representations against human judgements. Next, an individual example of 
the conceptual combination effect is first presented, followed by the aggregate analysis and the behav-
ioral study.  

4.1   Analysis of an Individual Example 

In the CAR theory, concepts’ interaction arises within multiple brain networks, activating similar brain 
zones for both concepts. These interactions determine the meaning of the concept combination (Binder, 
2016a, 2016b). As an example, consider the noun-verb interactions in Sentence 200: The yellow bird 
flew over the field, and Sentence 207: The red plane flew through the cloud. Since bird is a living thing, 
animate dimensions related to agency such as sensory, gustative, motor, affective, and cognitive expe-
riences are expected to be activated, including attributes like Speech, Taste, and Smell. In contrast, plane 
flew is expected to activate inanimate dimensions related to perceiving an object, as well as Emotion, 
Cognition, and Attention. 

Figure 3 shows the CARs for the word flew in the two sentences after they were modified by CERE-
BRA as described in Figure 2 and averaged across all eight subjects. In Sentence 200 there were indeed 
high activations on animate attributes like Biomotion, Smell and Taste, Music, Speech, as well as Com-
munication and Cognition. In contrast, Sentence 207 emphasizes perceptual features like Color, Size, 
and Shape, Weight, Audition, Loud, Duration, Social, Benefit, and Attention.  

The effect of conceptual combination on word meaning is clearly seen in this example. As the context 
varies, the overlap on neural representations create a mutual enhancement, producing a difference be-
tween animate and inanimate contexts. The CEREBRA model encodes this effect into the CAR repre-
sentations where it can be measured. In other experiments, a similar effect was observed for other noun-
verb pairs, as well as several adjective-noun pairs. Next, this effect is quantified statistically across the 
entire corpus of sentences. 
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Figure 3: Contrasting the conceptual combination effect in two different sentences. In Sentence 200 (blue bars), 
the CAR representation modified by CEREBRA for the word flew has salient activations on animate features, 
likely denoting bird properties like Biomotion, Smell and Taste, and Communication. In Sentence 207 (white 
bars), it has high activations on inanimate object features, describing a Loud, Large, and Heavy object such as a 
plane. Thus, there is a clear difference between animate and inanimate features found in each sentence. 

4.2   Aggregation Analysis 

The aggregation study hypothesis is based on the idea that similar sentences have a similar effect, and 
this effect is consistent across all words in the sentence. This effect was verified in the following process: 

1.   For each subject, modified CARs for each word in each sentence were formed through CEREBRA 
as described in Figure 2.  

2.   A representation for each sentence, SynthSent, was assembled by averaging the modified CARs.  
3.   Agglomerative hierarchical clusters of sentences were formed using the set of SynthSents. The Ward 

method and Euclidean metric were used to measure the distance between clusters and observations 
respectively. The process was stopped at 30 clusters, i.e., at the point where the granularity appeared 
most meaningful (e.g., sentences describing open locations vs. closed locations).  

4.   Each cluster of sentences is expected to reveal similar changes in some of the dimensions. To 
recognize such common patterns of changes, the next step is to calculate the average of the changes 
for words with similar roles, e.g., hospital, hotel, and embassy (within the same cluster of sentences). 
To that end, the differences between the modified and original CAR representations are measured 
separately for each CAR dimension in each word role, and their significance estimated using Stu-
dent's t-test. 

5.   The modified CARs of the OWS were averaged.  
6.   Pearson's correlations were then calculated between the modified CARs and the average CARs of 

the OWS across all the dimensions.  
7.   Similarly, correlations were calculated for the original CARs.  
8.   These two correlations were then compared. If the modified CARs correlate with the CARs of the 

OWS better than the original CARs, context effect based on conceptual combination is supported. 

In other words, this process aims to demonstrate that changes in a target word CAR originate from 
the OWS. For example, if the OWS have high values in the CAR dimension for Music, then that dimen-
sion in the modified CAR should be higher than in the original CAR for such target word. The correlation 
analysis measures this effect across the entire CAR representations. It measures whether the word mean-
ing changes towards the context meaning. For more detail see (Aguirre-Celis & Miikkulainen, 2019). 

The results are shown in Figure 4. The correlations are significantly higher for new CARs than for 
the original CARs across all subjects and all roles. Furthermore, the AGENT role represents a large part 
of the context in both analyses (i.e., modified and original CARs). Thus, the results confirm that the 
conceptual combination effect occurs reliably across subjects and sentences, and it is possible to quantify 
it by analyzing the fMRI images using the CEREBRA model on CARs. As a summary, the average 
correlation was 0.3201 (STDEV 0.020) for original CAR representations and 0.3918 (STDEV 0.034) 
for new CAR representations. 
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Figure 4: Correlation results. Average correlations analyzed by word class for eight subjects comparing original 
and new CARs vs. the average of the OWS respectively. A moderate to strong positive correlation was found 
between new CARs and the OWS, suggesting that features of one word are transferred to OWS during conceptual 
combination. Interestingly, the original and new patterns are most similar in the AGENT panel, suggesting that 
this role encodes much of the context. 

4.3   Mapping Brain to Behavior 

A behavioral analysis was designed to evaluate the CEREBRA’s context-based representations via 
human judgements. That is, Sections 4.1 and 4.2 showed that differences in the fMRI patterns in sentence 
reading can be explained by context-dependent changes in the semantic feature representations of the 
words. The goal of this section is to show that these changes are meaningful to humans. Therefore, 
human judgements are compared to changes predicted by the CEREBRA model.  
Measuring Human Judgements: A survey was designed to characterize context-dependent changes by 
asking the subject directly: In this context, how does this attribute change? Human judgements were 
crowdsourced using Google Forms in accordance with the University of Texas at Austin Institutional 
Review Board (2018-08-0114). 

The complete survey is an array of 24 questionnaires that include 15 sentences each. For each 
sentence, the survey measures 10 attribute changes for each target word. Only the top 10 statistically 
most significant attribute changes for each target words (roles) were used. Overall, each questionnaire 
thus contains 150 evaluations. For example, a questionnaire might measure changes on 10 specific 
attributes such as ‘is visible’, ‘living thing that moves’, ‘is identified by sound’, ‘has a distinctive taste’, 
for a specific word class such as politician, for 15 sentences such as The politician celebrated at the 
hotel. A particular example sentence questionnaire is shown in Figure 5. 

Human responses were first characterized through data distribution analysis. Table 1(a) shows the 
number of answers “less” (-1), “neutral” (0), and “more” (1) for each participant. Columns labeled P1, 
P2, P3, and P4 show the answers of the participants. The top part of the table shows the distribution of 
the raters’ responses and the bottom part shows the level of agreement among them. As can be seen from 
the table, the participants agreed only 47% of the time. Since the inter-rater reliability is too low, only 
questions that were the most reliable were included, i.e., where three out of four participants agreed. 
There were 1966 such questions, or 55% of the total set of questions.  
Measuring Model Predictions: The survey directly asks for the direction of change of a specific word 
attribute in a particular sentence, compared to the word’s generic meaning. Since the changes in the 
CEREBRA model range within (-1,1), in principle that is exactly what the model produces. However, 
during the experiments it was found that some word attributes always increase, and do so more in some 
contexts than others. This effect is related to conceptual combination (Hampton, 1997; Wisniewsky, 
1998), contextual modulation (Barclay, 1974), and attribute centrality (Medin & Shoben, 1988): the 
same property is true for two different concepts but more central to one than to the other (e.g., it is more 
important for boomerangs to be curved than for bananas).  
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Figure 5: An example sentence in the survey. The 
sentence is The politician celebrated at the hotel, the 
target word is politician in the role of Agent. Ten 
different attribute changes are measured by selecting 
whether the attribute increased (“more”), decreased 
(“less”) or remained “neutral”. These human 
judgements were then matched with those predicted by 
CEREBRA. 

 

 
(a) Human Responses 

 
(b)Matching Predictions 

 

 
(c) Statistical Significance 

 
Table 1: Comparing CEREBRA predictions with human judgements. (a) Distribution analysis and inter-rater 
agreement. The top table shows human judgement distribution for the three responses “less” (-1), “neutral” (0), 
and “more” (1). The bottom table shows percentage agreement for the four participants. Humans agree 47% of the 
time. (b) Matching CEREBRA predictions with human data, compared to chance baseline. The table shows the 
average agreement of the 20 repetitions across all subjects. CEREBRA agrees with human responses 54% while 
baseline is 45% - which is equivalent to always guessing “more”, i.e., the largest category of human responses. (c) 
Statistical analysis for CEREBRA and baseline. The table shows the means and variances of CEREBRA and 
chance models for each subject and the p-values of the t-test, showing that the differences are highly significant. 
Thus, the context-dependent changes are actionable knowledge that can be used to predict human judgements. 
 

The direction of change is therefore not a good predictor of human responses. Instead these changes 
need to be measured relative to changes in the OWS. Three approaches were thus used to evaluate the  
changes: (1) What is the effect of the rest of the sentence in the target word? This effect was measured 
by computing the average of the CEREBRA changes (i.e., new-original) of the OWS, and subtracting 
that average change from the change of the target word. (2) What is the effect of the entire sentence in 
the target word? This effect was measured by computing the average of the CEREBRA changes (i.e.,  
new-original) of all the words in the sentence including the target word, and subtracting that average 
change from the change of the target word. (3) What is the effect of CARs used in context as opposed 
to CARs used in isolation? This effect was measured by computing the average of the CEREBRA 
changes (i.e., new-original) of the different representations of the same word in several contexts, and 
subtracting that average change from the change of the target word .  
Matching Model Predictions with Human Judgements: In order to demonstrate that the CEREBRA 
model has captured human performance, the agreements of the CEREBRA changes and human surveys 

HUMAN&RESPONSES
&&&&&&DISTRIBUTION

Resp/Part P1 P2 P3 P4 AVG %
!1 2065 995 645 1185 1223 34.0%
0 149 1120 1895 1270 1109 30.8%
1 1386 1485 1060 1145 1269 35.3%

TOT 3600 3600 3600 3600 3600 100%

&&&&&&&&PARTICIPANT
AGREEMENT&ANALYSIS&

P1 P2 P3 P4 AVERAGE %
P1 0 1726 1308 1650 1561 43%
P2 1726 0 1944 1758 1809 50%
P3 1308 1944 0 1741 1664 46%
P4 1650 1758 1741 0 1716 48%

TOTAL 6751
AVG&xPART 1688

AVERAGE //Particip/match/each/other 47%

!PARTICIPANTS!AVERAGE!AGREEMENT
RATINGS HUMAN CEREBRA CHANCE
!"1/0 1074 466 8
1 892 587 886

TOTAL 1966 1052 894
Match!each!other 54% 45%

SUBJECTS CEREBRA CHANCE p"value
MEAN VAR MEAN VAR

S5051 1033 707.25 894 6.01 3.92E&24
S9322 1035 233.91 894 7.21 6.10E&33
S9362 1063 224.41 894 11.52 5.22E&36
S9655 1077 94.79 894 7.21 3.89E&44
S9701 1048 252.79 895 12.03 1.83E&33
S9726 1048 205.82 894 4.62 1.73E&35
S9742 1075 216.77 895 7.21 1.65E&37
S9780 1039 366.06 894 2.52 6.10E&30
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need to be at least above chance. Therefore a baseline model that generated random responses from the 
distribution of human responses was created. The three CEREBRA approaches produced very similar 
results, therefore only those of the third approach are reported in Table 1(b), and the statistical 
significance of the comparisons in Table 1(c).  

The CEREBRA model matches human responses in 54% of the questions when the baseline is 45% 
- which is equivalent to always guessing “more”, i.e., the largest category of human responses. The 
differences shown in Table 1(c) are statistically strongly significant for all of the eight subjects. These 
results show that the changes in word meanings (i.e., due to sentence context observed in the fMRI and 
interpreted by CEREBRA) are real and meaningful to humans (Aguirre-Celis & Miikkulainen, 2020). 

5   Discussion and Future Work 

An interesting future work direction would be to replicate the study on a more extensive data set with a 
fully balanced stimuli and with fMRI images of individual words. The differences should be even 
stronger and it should be possible to uncover more refined effects. Such data should also improve the 
survey, since it would be possible to identify questions where the effects can be expected to be more 
reliable.  

Compared to other approaches, such as distributional semantic models (DSMs), CAR theory enables 
a mapping between conceptual content and neural representations. In CARs conceptual knowledge is 
distributed across a small set of modality-specific neural systems that are engaged when instances of the 
concept are experienced. In contrast, DSMs reflect conceptual knowledge acquired through a lifetime 
of linguistic experience, and they are not grounded on perception and action. Experiential data specify 
the perceived physical attributes or properties associated with the referents of words (e.g., a carrot refers 
to an object whose attributes describes it as orange, conical/cylindrical, juicy, crispy, sweet). In contrast, 
linguistic data specify how a given word is statistically distributed across different texts (e.g., a carrot is 
a root vegetable, usually orange, Dutch invented the orange carrots, it contains high carotene, human 
body turns carotene into vitamin A). A lot of experiential data is usually unstated in such texts. Thus, 
experiential data provide a foundation that support both perceptual data (e.g., answering “orange” to 
“What color are carrots?), as well as associative/encyclopedic data (e.g., answering “rabbit” to “What 
animal likes to eat carrots?”; Anderson et al., 2019; Andrews et al., 2009; Martin, 2007).  

In the future, multimodal CEREBRA representations could be used to make natural language pro-
cessing systems more robust. For instance, it may be possible to train a neural network to represent 
context simultaneously from both DSMs and CEREBRA representations as part of a natural language 
understanding system for service robot applications. For instance, service robots with such 
representations would have the capability to understand natural language commands (e.g., watering 
plants), to have encyclopedic knowledge (i.e., to make decisions), to ground language by adapting to the 
environment (i.e., object recognition, location) and by understanding novel concepts (i.e., “rain water”). 
Thus, the CEREBRA representations provide the experiential-based data (i.e., concrete words) and the 
DSMs provide the association-based data (i.e., abstract words), leading to a more robust performance. 

6   Conclusion 

The CEREBRA model was constructed to test the hypothesis that word meanings change dynamically 
based on context. The results suggest three significant findings: (1) context-dependent meaning 
representations are embedded in the fMRI sentences, (2) they can be characterized using brain-based 
semantic representations (CARs) together with the CEREBRA model, and (3) the attribute weighting 
changes are real and meaningful to the subjects. CEREBRA thus takes a step towards understanding 
how the brain constructs sentence-level meanings dynamically from word-level features. 
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