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Abstract

Current research in machine learning for ra-
diology is focused mostly on images. There
exists limited work in investigating intelligent
interactive systems for radiology. To address
this limitation, we introduce a realistic and
information-rich task of Visual Dialog in radi-
ology, specific to chest X-ray images. Using
MIMIC-CXR, an openly available database
of chest X-ray images, we construct both a
synthetic and a real-world dataset and pro-
vide baseline scores achieved by state-of-the-
art models. We show that incorporating medi-
cal history of the patient leads to better perfor-
mance in answering questions as opposed to
conventional visual question answering model
which looks only at the image. While our ex-
periments show promising results, they indi-
cate that the task is extremely challenging with
significant scope for improvement. We make
both the datasets (synthetic and gold standard)
and the associated code publicly available to
the research community.

1 Introduction

Answering questions about an image is a complex
multi-modal task demonstrating an important ca-
pability of artificial intelligence. A well-defined
task evaluating such capabilities is Visual Question
Answering (VQA) (Antol et al., 2015) where a sys-
tem answers free-form questions reasoning about
an image. VQA demands careful understanding
of elements in an image along with intricacies of
the language used in framing a question about it.
Visual Dialog (VisDial) (Das et al., 2017; de Vries
et al., 2016) is an extension to the VQA problem,
where a system is required to engage in a dialog
about the image. This adds significant complex-
ity to VQA where a system should now be able
to associate the question in the image, and reason

∗ Equal contribution, Work done at IBM Research

over additional information gathered from previous
question answers in the dialog.

Although limited work exploring VQA in radiol-
ogy exists, VisDial in radiology remains an unex-
plored problem. With the healthcare setting increas-
ingly requiring efficiency, evaluation of physicians
is now based on both the quality and the timeli-
ness of patient care. Clinicians often depend on
official reports of imaging exam findings from ra-
diologists to determine the appropriate next step.
However, radiologists generally have a long queue
of imaging studies to interpret and report, caus-
ing subsequent delay in patient care (Bhargavan
et al., 2009; Siewert et al., 2016). Furthermore, it is
common practice for clinicians to call radiologists
asking follow-up questions on the official reporting,
leading to further inefficiencies and disruptions in
the workflow (Mangano et al., 2014).

Visual dialog is a useful imaging adjunct that
can help expedite patient care. It can potentially
answer a physician’s questions regarding official in-
terpretations without interrupting the radiologist’s
workflow, allowing the radiologist to concentrate
their efforts on interpreting more studies in a timely
manner. Additionally, visual dialog could provide
clinicians with a preliminary radiology exam in-
terpretation prior to receiving the formal dictation
from the radiologist. Clinicians could use the infor-
mation to start planning patient care and decrease
the time from the completion of the radiology exam
to subsequent medical management (Halsted and
Froehle, 2008).

In this paper, we address these gaps and make
the following contributions: 1) we introduce con-
struction of RadVisDial - the first publicly available
dataset for visual dialog in radiology, derived from
the MIMIC-CXR (Johnson et al., 2019) dataset,
2) we compare several state-of-the-art models for
VQA and VisDial applied to these images, and 3)
we conduct a comprehensive set of experiments
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highlighting different challenges of the problem
and propose solutions to overcome them.

2 Related Work

Most of the large publicly available datasets (Kag-
gle, 2017; Rajpurkar et al., 2017) for radiology
consist of images associated with a limited amount
of structured information. For example, Irvin et al.
(2019); Johnson et al. (2019) make images avail-
able along with the output of a text extraction mod-
ule that produces labels for 13 abnormalities in a
chest X-ray. Of note recently, the task of generating
reports from radiology images has become popular
in the research community (Jing et al., 2018; Wang
et al., 2018). Two recent shared tasks at Image-
CLEF explored the VQA problem with radiology
images (Hasan et al., 2018; Abacha et al., 2019).
Lau et al. (2018) also released a small dataset VQA-
RAD for the specific task.

The first VQA shared task at ImageCLEF (Hasan
et al., 2018) used images from articles at PubMed
Central. While Abacha et al. (2019) and Lau
et al. (2018) use clinical images, the sizes of these
datasets are limited. They are a mix of several
modalities including 2D modalities such as X-rays,
and 3D modalities such as ultrasound, MRI, and CT
scans. They also cover several anatomic locations
from the brain to the limbs. This makes a multi-
modal task with such images overly challenging,
with shared task participants developing separate
models (Al-Sadi et al., 2019; Abacha et al., 2018;
Kornuta et al., 2019) to first address these subtasks
(such as modality detection) before actually solving
the problem of VQA.

We address these limitations and build up on
MIMIC-CXR (Johnson et al., 2019) the largest
publicly available dataset of chest X-rays and cor-
responding reports. We focus on the problem of
visual dialog for a single modality and anatomy in
the form of 2D chest X-rays. We restrict the num-
ber of questions and generate answers for them
automatically which allows us to report results on
a large set of images.

3 Data

3.1 MIMIC-CXR
The MIMIC-CXR dataset1 consists of 371,920
chest X-ray images in the Digital Imaging and
Communications (DICOM) format along with

1https://physionet.org/content/
mimic-cxr/1.0.0/

206,576 reports. Each report is well structured and
typically consists of sections such as Medical
Condition, Comparison, Findings, and
Impression. Each report can map to one or
more images and each patient can have one or
more reports. The images consist of both frontal
and lateral views. The frontal views are either
anterior-posterior (AP) or posterior-anterior (PA).
The initial release of data also consists of annota-
tions for 14 labels (13 abnormalities and one No
Findings label) for each image. These anno-
tations are obtained by running the CheXpert la-
beler (Irvin et al., 2019); a rule-based NLP pipeline
against the associated report. The labeler output
assigns one of four possibilities for each of the 13
abnormalities: {yes, no, maybe, not mentioned in
the report}.

3.2 Visual Dialog dataset construction

Every training record of the original VisDial dataset
(Das et al., 2017) consists of three elements: an im-
age I , a caption for the image C, and a dialog
history H consisting of a sequence of ten question-
answer pairs. Given the image I , the caption C,
a possibly empty dialog history H , and a follow-
up question q, the task is to generate an answer a
where {q, a} ∈ H . Following the original formula-
tion, we synthetically create our dataset using the
plain text reports associated with each image (this
synthetic dataset will be considered to be silver-
standard data for the experiments described in sec-
tion 5). The Medical Condition section of
the radiology report is a single sentence describing
the medical history of the patient. We treat this sen-
tence from the Medical Condition section as
the caption of the image. We use NegBio (Peng
et al., 2018) for extracting sections within a report.

We discard all images that do not have a medical
condition in their report. Further, each CheXpert
label is formulated as a question probing the pres-
ence of a disorder, and the output from the labeler
is treated as the corresponding answer. Thus, ignor-
ing the No Findings label, there are 52 possible
question-answer pairs as a result of 13 questions
and 4 possible answers.

We decided to focus on PA images for most of
our experiments as this is the most informative
view for chest X-rays, according to our team radi-
ologists. The original VisDial dataset (Das et al.,
2017) consists of ten questions per dialog and one
dialog per image. Since we only have a set of 13

https://physionet.org/content/mimic-cxr/1.0.0/
https://physionet.org/content/mimic-cxr/1.0.0/
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	Q:	Airspace	opacity?
	A:	Yes
	Q:	Fracture?
	A:	Not	in	report
	Q:	Lung	lesion?
	A:	No

	Pneumonia?
	Yes

80 year old man s/p  vats R lower lobectomyTwo people are in a wheelchair and one is holding a racket

Figure 1: Comparison of VisDial 1.0 (left) with our synthetically constructed dataset (right).

possible questions, we limit the length of the dialog
to 5 randomly sampled questions. The resulting
dataset has 91060 images in the PA view (with
train/validation/test splits containing 77205, 7340
and 6515 images, respectively). This synthetic data
will be made available through the MIMIC Derived
Data Repository.2 Thus any individual with access
to MIMIC-CXR will have access to our data. Fig-
ure 1 shows an example from our dataset and how
it compares with one from VisDial 1.0.

3.3 Evaluation

The questions in our dataset are limited to probing
the presence of an abnormality in a chest X-ray.
Similarly, the answers are limited to one of the
four choices. Owing to the restricted nature of the
problem, we deviate from the evaluation protocol
outlined in (Das et al., 2017) and instead calculate
the F1-score for each of the four answers. We also
report a macro-averaged F1 score across the four
answers to make model comparisons easier.

4 Models

For our experiments, we selected a set of models
designed for image-based question answering tasks.
Namely, we experimented with three architectures:
Stacked Attention Network (SAN) (Yang et al.,
2016), Late Fusion Network (LF) (Das et al., 2017),
and Recursive Visual Attention Network (RVA)
(Niu et al., 2019). Following the original VisDial
study (Das et al., 2017), we use an encoder-decoder
structure with a discriminative decoder for each of
the models. Below we give an overview of all the
three algorithms.

4.1 Stacked Attention Network

The original configuration of SAN was introduced
for the general-domain VQA task. The model per-
forms multi-step reasoning by refining question-

2https://physionet.org/physiotools/
mimic-code/HEADER.shtml

NoLSTM

LSTM

Pneumonia?

Airspace
opacity? 

No
...

+

Figure 2: The modified architecture of the SAN model
(image taken from (Yang et al., 2016)). The proposed
modification shown in orange incorporates the history
of dialog turns in the same way as the question through
an LSTM. In our ablation experiments the changed part
either reduces to encoding an image caption only or
gets cut completely.

guided attention over image features in an itera-
tive manner. The attended image features are then
combined with the question features for answer
prediction. SAN has been successfully adapted for
medical VQA tasks such as VQA-RAD (Lau et al.,
2018) and VQA-Med task of the ImageCLEF 2018
challenge (Ionescu et al., 2018). In our setup, we
use a stack of two image attention layers and an
LSTM-based question representation.

To take the dialog history into account and there-
fore adjust the SAN model for the needs of the
Visual Dialog task, we modify the first image at-
tention layer of the network by adding a term for
LSTM representation of the history. This modifica-
tion forces the image attention weights to become
both question- and history-guided (see Figure 2).

4.2 Late Fusion Network

Proposed by (Das et al., 2017) as a baseline model
for the Visual Dialog task, Late Fusion Network
encodes the question and the dialog history through
two separate RNNs, and the image through a CNN.
The resulting representations are simply concate-

https://physionet.org/physiotools/mimic-code/HEADER.shtml
https://physionet.org/physiotools/mimic-code/HEADER.shtml
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nated in a single vector, which is then used by
a decoder for predicting the answer. We use this
model unchanged, as released in the original Visual
Dialog challenge.

4.3 Recursive Visual Attention

This model is the winner of the 2019 Visual Di-
alog challenge3. It recursively browses the past
history of dialog turns until the current question is
paired with the turn containing the most relevant
information. This strategy is particularly useful
for resolving co-references, naturally occurring in
general-domain dialog questions. As previously,
we do not modify the architecture of the model.

5 Experiments

This section presents our down-sampling strategy,
gives details about conducted ablation studies, and
describes experiments with various representations
of images and texts.

5.1 Downsampling

A closer analysis of our data showed that the major-
ity of the reports processed by the CheXpert labeler
resulted in no mention of most of the 13 patholo-
gies. This presented a heavily skewed dataset that
would lead to a biased model instead of true visual
understanding. This issue is not unique to radiol-
ogy; it is observed even in the current benchmarks
for VQA, and attempts have been made to miti-
gate the resulting problems (Hudson and Manning,
2019; Zhang et al., 2016; Agrawal et al., 2018).

In order to dissuade the answer biases, we per-
formed data balancing, specifically by downsam-
pling major labels in our dataset. As mentioned
above, the CheXpert labeler outputs four possible
answers for 13 labels. To investigate the skew in the
data, we plotted a distribution of the 52 question-
answer pairs (Figure 3). Further, we downsampled
the question-answer pairs to fit a smoother answer
distribution with the method presented in GQA
based on the Earth Mover’s Distance method (Hud-
son and Manning, 2019; Rubner et al., 2000). We
iterated over the 52 pairs in decreasing frequency
order and downsampled the categories belonging
to the skewed head of the distribution. The relative
label ranks by frequency remained the same for the
balanced sets as with the unbalanced sets. For ex-
ample, the pairs {‘Other pleural findings’→ ‘Not

3https://visualdialog.org/challenge/
2019

Figure 3: Downsampling strategies. Every bar along
the X axis represents a single question-answer pair,
where questions (13 in total) and answers (4 in total)
are obtained through CheXpert.

in report’ } and {‘Fracture’ → ‘Not in report’ }
remained the first and second largest counts in both
the unbalanced and downsampled versions of the
datasets. To reduce the disparity between dominant
and underrepresented categories, we tuned the pa-
rameters outlined in (Hudson and Manning, 2019).
We experimented with two different sets of param-
eter values and obtained two datasets with more
balanced question-answer distributions. We further
refer to them as “minor” and “major” downsam-
pling, reflecting the total amount of data reduced
(shown in blue and gray in Figure 3).

5.2 Evaluating importance of context

To assess the importance of the dialog context for
question answering, we compare the performance
of different variations of the Stacked Attention Net-
work, selected as the best-performing model in the
previous experiment (see subsection 6.1). In par-
ticular, we examine three scenarios: (a) the model
makes a prediction based solely on a given image
(essentially solving the VQA task rather than the
Visual Dialog task), (b) the model makes its pre-
diction given an image and its caption, and (c) the
model makes its prediction given an image, a cap-
tion, and a history of question-answer pairs. Simi-
lar to the model modifications described in subsec-
tion 4.1 and Figure 2, we achieve the goal through
experimenting with the SAN model by changing its
first image attention layer to accordingly take in (a)
question and image features, (b) question, image,
and caption features, and (c) question, image, and
full dialog history features.

https://visualdialog.org/challenge/2019
https://visualdialog.org/challenge/2019
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5.3 Image representations

We test three approaches for pre-trained image rep-
resentations. The first approach uses a ResNet-
101 architecture (He et al., 2016) for multiclass
classification of input X-ray images into 14 find-
ing labels extracted from the associated reports
(as described in section 3.2). Our second method
aims to replicate the original CheXpert study (Irvin
et al., 2019). Here we use a DenseNet-121 image
classifier trained for prediction of five pre-selected
and clinically important labels, namely, atelectasis,
cardiomegaly, consolidation, edema, and pleural
effusion. In both ResNet and DenseNet-based ap-
proaches we take the features obtained from the
last pooling layer.

Finally, we adopted a bottom-up mechanism for
image region proposal introduced by Anderson
et al. (2018). More specifically, we first trained
a neural network predicting bounding boxes for
the image regions, corresponding to a set of 11
handcrafted clinical annotations adopted from an
existing chest X-ray dataset4. We then represented
every region as a latent feature vector of a trained
patch-wise convolution autoencoder, and (3) con-
catenated all the obtained vectors to represent the
entire image.

Based on the results of the experiment (subsec-
tion 6.3), we found that ResNet-101 image vectors
yielded the best performance, so we used them in
other experiments.

5.4 Effect of incorporating a lateral view

One of the crucial aspects of X-ray radiography
exams is to capture the subject from multiple views.
Typically, in case of chest X-rays, radiologists order
an additional lateral view to confirm and locate
findings that are not clearly visible from a frontal
(PA or AP) view. We test whether the VisDial
models are able to leverage the additional visual
information offered by a lateral (LAT) view. We
filter the data down to the patients whose chest X-
ray exams had both a frontal and lateral views and
re-sample the resulting data-set into train (52952
PA and 8086 AP images), validation (6614 PA and
964 AP images), and test (6508 PA and 1035 AP
images). We train a separate ResNet-101 model
for each of the three views on this re-sampled data
using the method described in the previous section.
The vector representations of a frontal view and the

4https://www.kaggle.com/c/
rsna-pneumonia-detection-challenge

corresponding lateral view are concatenated as an
aggregate image representation.

5.5 Text representations

Finally, we investigate the best way for represent-
ing the textual data by incorporating different pre-
trained word vectors. More specifically, we mea-
sure the performance of our best-performing SAN
model reached with (a) randomly initialized word
embeddings trained jointly with the rest of the
models, (b) domain-independent GloVe Common
Crawl embeddings (Pennington et al., 2014), and
(c) domain-specific fastText embeddings trained
by (Romanov and Shivade, 2018). The latter are
initialized with GloVe embeddings trained on Com-
mon Crawl, followed by training on 12M PubMed
abstracts, and finally on 2M clinical notes from
MIMIC-III database (Johnson et al., 2016). In
all the experiments, we use 300-dimensional word
vectors. We also experimented with transformer-
based contextual vectors using BERT (Devlin et al.,
2019). More specifically, instead of using LSTM
representations of the textual data, we extracted the
last layer vectors from ClinicalBERT (Alsentzer
et al., 2019) pre-trained on MIMIC notes, and aver-
aged them over input sequence tokens.

5.6 Question order

In a visual dialog setting, a model is conditioned on
the image vector, the image caption, and the dialog
history to predict the answer to a new question.
We hypothesized that a model should be able to
answer later questions in a dialog better since it
has more information from the previous questions
and their answers. As described in Section 3.2, we
randomly sample 5 questions out of 13 possible
choices to construct a dialog. We re-ordered the
question-answer pairs in the dialog to reflect the
order in which the corresponding abnormality label
mentions occurred in the report. However, results
for questions ordered based on their occurrence in
the narrative did not vary from the setup with a
random order of questions.

6 Results

We report macro-averaged F1-scores achieved on
the same unbalanced validation set for each of the
experiments. When experimenting with different
configurations of the same model, we also break
down the aggregate score to the F1 scores for indi-
vidual answer options.

https://www.kaggle.com/c/rsna-pneumonia-detection-challenge
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge
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Model ‘Yes’ ‘No’ ‘Maybe’ ‘Not in report’ Macro F1

SAN (VQA) 0.24 0 0.09 0.84 0.29
SAN (caption only) 0.30 0.09 0.09 0.81 0.33
SAN (full history) 0.22 0.26 0.04 0.83 0.34

Table 1: Ablation experiments. Per-answer F1-scores along with the macro F1-score are shown for tested SAN
configurations.

6.1 Downsampling
Our results show (Table 2) consistent improvement
of the scores across all the models as the train-
ing data becomes more balanced. All the mod-
els yielded comparable scores, with SAN being
slightly better than other models (0.34 against 0.33
macro F1-score). Later in our experiments, we used
the major down sampled version of the data-set.

Model Unbalanced Downsampled
Minor Major

SAN 0.25 0.28 0.34
LF 0.28 0.31 0.33
RvA 0.24 0.33 0.33

Table 2: Data balancing experiments. Macro F1 scores
are reported for every tested model.

6.2 Evaluating importance of context
One of the main findings of our study revealed the
importance of contextual information for answer-
ing questions about a given image. As shown in
Table 1, adding the image caption and the history
of turns results in incremental increases of macro
F1-scores. Notably, the VQA setup in which the
model relies on the image only, it fails to detect the

‘No’ answer, whereas the history-aware configura-
tion leads to a significant performance gain for this
particular label. As expected and due to the skewed
nature of the data-set, the highest and the lowest
per-label scores were achieved for the most and the
least frequent labels (‘Not in report’ and ‘Maybe’),
respectively.

6.3 Image representation
Out of the tested image representations, ResNet-
derived vectors perform consistently better than the
other approaches (see Table 3). Although in our
DenseNet-121 image classification pre-training we
were able to replicate the performance of (Irvin
et al., 2019), the Visual Dialog scores for the corre-
sponding vectors turned out to be lower. We believe

this might be due to the fact that, by design, the net-
work uses a limited set of pre-training classes not
sufficient to generalize well to a full set of diseases
used in the Visual Dialog task.

Model DenseNet-121 Region
Proposal

ResNet

SAN 0.27 0.29 0.34
LF 0.33 0.31 0.33
RvA 0.29 0.32 0.33

Table 3: Comparative performance (macro-F1) of Vi-
sual Dialog models on the test set with different image
representations.

6.4 Effect of incorporating a lateral view

As expected, for both variations of the frontal view
(i.e. AP and PA) appending lateral image vectors
enhanced the performance of the tested SAN model
(see Table 4). This suggests that lateral and frontal
image vectors complement each other, and the mod-
els can benefit from using both. However, in our
data-set only a subset of reports has both views
available, which significantly reduces the amount
of training data.

6.5 Word embeddings

Another observation from our experiments is that
domain-specific pre-trained word embeddings con-
tribute to better scores (see Table 5). This is due
to the fact that domain-specific embeddings con-
tain medical knowledge that helps the model make
more justified predictions.

When using BERT, we did not notice gains in
performance, which most likely means that the last-
layer averaging strategy is not optimal and more
sophisticated approaches such as (Xiao, 2018) are
required . Alternatively, the final representation of
the CLS can be used to represent input text.
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View ‘Yes’ ‘No’ ‘Maybe’ ‘Not in report’ Macro F1

A
P+

L
A

T AP 0.40 0.21 0.12 0.79 0.381
LAT 0.41 0.23 0.13 0.75 0.379
AP + LAT 0.41 0.22 0.12 0.79 0.385

PA
+L

A
T PA 0.30 0.30 0.08 0.88 0.392

LAT 0.32 0.32 0.07 0.86 0.391
PA + LAT 0.32 0.34 0.06 0.87 0.396

Table 4: Effect of adding the lateral view to a frontal view (AP and PA).

Embedding ‘Yes’ ‘No’ ‘Maybe’ ‘Not in report’ Macro F1

Random 0.26 0.22 0.04 0.73 0.31
GloVe (common crawl) 0.27 0 0.09 0.80 0.29
fastText (MedNLI) 0.24 0.22 0.07 0.84 0.33

Table 5: Comparative performance of the SAN model with different word embeddings.

7 Comparison with the gold-standard
data

To complement our experiments with the silver
data and investigate the applicability of the trained
models to real-world scenarios, we also collected a
set of gold standard data which consisted of two ex-
pert radiologists having a dialog about a particular
chest X-ray. These X-ray images were randomly
sampled PA views from the test our data. In this
section, we present the data collection workflow,
outline the associated challenges, compare the re-
sulting data-set with the silver-standard, and report
the performance of trained models.

7.1 Gold Standard Data Collection
We laid the foundations for our data collection in
a manner similar to that of the general visual dia-
log challenge (Das et al., 2017). Two radiologists,
designated as a “questioner” and an “answerer”,
conversed with each other following a detailed an-
notation guideline created to ensure consistency.
The “answerer” in each scenario was provided with
an image and a caption (medical condition). The
“questioner” was provided with only the caption,
and tasked with asking follow-up questions about
the image, visible only to the “answerer”. In or-
der to make the gold data-set comparable to the
silver-standard one, we restricted the beginning of
each answer to contain a direct response of ‘Yes’,

‘No’, ‘Maybe’, or ‘Not mentioned’. In our anno-
tation guidelines ‘Not mentioned’ referred to the
lack of evidence of the given medical condition
that was asked by the “questioner” radiologist. The

answer was elaborated with additional information
if the radiologists found it necessary. The whole
data collection procedure resulted in 100 annotated
dialogs.

7.2 Gold standard results

Following the gold standard data collection, we
performed some preliminary analyses with the best
silver standard SAN model. Our gold standard data
was split into train (70), validation (20), and test
(10) sets. We experimented with three setups: (a)
evaluating the silver-data trained networks on the
gold standard data, (b) training and evaluating the
models on the gold data, and (c) fine-tuning the
silver-data trained networks on the gold standard
data. Table 6 shows the results of these experiments.
We found the best macro-F1 score of 0.47 was
achieved by the silver data-trained SAN network
fine-tuned on the gold standard data. We observed
that the model could not directly predict any of the
classes if directly evaluated on the gold data-set,
suggesting that it was trained to fit the data patterns
significantly different from those present in the
collected data-set. However, pre-training on the
silver data serves as a good starting point for further
model fine-tuning. The obtained scores in general
imply that there are many differences between the
gold and silver data, including their vocabularies,
answer distributions, and level of question detail.

7.3 Comparison of gold and silver data

To provide a meaningful analysis of the sources
of difference between the gold and silver datasets,
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Train data ‘Yes’ ‘No’ Macro F1

Silver 0.00 0.00 0.00
Gold 0.27 0.77 0.35
Silver+gold 0.60 0.82 0.47

Table 6: Comparative performance of the SAN model
trained on different combinations of silver and gold
data, and evaluated on the test subset of gold data. Note
that the gold annotations did not contain ‘Not in report’
and ‘Maybe’ options.

we grouped the gold questions semantically by us-
ing the CheXpert vocabulary for the 13 labels used
for the construction of the silver dataset. The gold
questions that are unable to be grouped via CheX-
pert were mapped manually using expert clinical
knowledge. We systematically compared the gold
and silver dialogs on the same 100 chest X-rays
and noted the following differences.

• Frequency of semantically equivalent ques-
tions. Just under half of the gold question
types were semantically covered by the ques-
tions in the silver dataset.

• Granularity of questions. We observed that
the silver dataset tends to ask highly granular
questions about specific findings (e.g. “con-
solidation”) as expected. The radiology ex-
perts, however, asked a range of low (e.g.
“Are there any bone abnormalities?), medium
(e.g. “Are the lungs clear?”) and high (e.g.
“Is there evidence of pneumonia?”) granular-
ity questions. The gold dialogs tend to start
with broader (low granularity) questions and
narrow the differential diagnosis down as the
dialogs progress.

• Question sense. The radiologists also asked
questions in the form of whether some struc-
ture is “normal” (e.g. “Is the soft tissue
normal?”). Whereas, the silver questions
only asked whether an abnormality is present.
Since chest X-rays are screening exams where
a good proportion of the images may be “nor-
mal”, having more questions asking whether
different anatomies are normal would, there-
fore, yield more ‘Yes’ answers.

• Answer distributions The answer distribu-
tions of the gold and silver data differ greatly.
Specifically, while the gold data was com-

posed heavily of ‘Yes’ or ‘No’ answers, the
silver comprised mostly of ‘Not in report’.

8 Discussion

Our main finding is that the introduced task of vi-
sual dialog in radiology presents a lot of challenges
from the machine learning perspective, including a
skewed distribution of classes and a required abil-
ity to reason over both visual and textual input
data. The best of our baseline models achieved
0.34 macro-averaged F1-score, indicating on a sig-
nificant scope for potential improvements. Our
comparison of gold and silver standard data shows
some trends are in line with medical doctors’ strate-
gies in medical history taking, starting with broader,
general questions and then narrowing the scope of
their questions to more specific findings (Talbot
et al.; Campillos-Llanos et al., 2020).

Despite the difficulty and the practical usefulness
of the task, it is important to list the limitations of
our study. The questions were limited to presence
of 13 abnormalities extracted by CheXpert and the
answers were limited to 4 options. The studies
used in this work (from MIMIC-CXR) originate
from a single tertiary hospital in the United States.
Moreover, they correspond to a specific group of
patients, namely those admitted to the Emergency
Department (ED) from 2012 to 2014. Therefore,
the data and hence the model reflect multiple real-
world biases. It should also be noted that chest
X-rays are mostly used for screening than diagnos-
tic purposes. A radiology image is only one of the
many data points (e.g. labs, demographics, medi-
cations) used while making a diagnosis. Therefore,
although predicting presence of abnormalities (e.g.
pneumonia) based on brief knowledge of the pa-
tient’s medical history and the chest X-ray might
be a good exercise and a promising first step in
evaluating machine learning models, it is clinically
limited.

There are plenty of directions for future work
that we intend to pursue. To make the synthetic
data more realistic and expressive, both questions
and answers should be diversified with the help of
clinicians’ expertise and external knowledge bases
such as UMLS(Bodenreider, 2004). We plan to
enrich the data with more question types, address-
ing, for example, the location or the size of a given
lung abnormality. We plan to collect more real life
dialog between radiologists and augment the two
datasets to get a richer set of more expressive dia-
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log. We anticipate that bridging the gap between
the silver- and the gold-standard data in terms of
natural language formulations would significantly
reduce the difference in model performance for the
two setups.

Another direction is to develop a strategy to man-
age the uncertain labels such as ‘Maybe’ and ‘Not
in report’ to make the dataset more balanced.

9 Conclusion

We explored the task of Visual Dialog for radiol-
ogy using chest X-rays and released the first pub-
licly available silver- and gold-standard datasets
for this task. Having conducted a set of rigorous
experiments with state-of-the-art machine learning
models used for the combination of visual and lan-
guage reasoning, we demonstrated the complexity
of the task and outlined the promising directions
for further research.
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