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Abstract

Text segmentation aims to uncover latent struc-
ture by dividing text from a document into co-
herent sections. Where previous work on text
segmentation considers the tasks of document
segmentation and segment labeling separately,
we show that the tasks contain complemen-
tary information and are best addressed jointly.
We introduce the Segment Pooling LSTM (S-
LSTM) model, which is capable of jointly seg-
menting a document and labeling segments. In
support of joint training, we develop a method
for teaching the model to recover from errors
by aligning the predicted and ground truth seg-
ments. We show that S-LSTM reduces seg-
mentation error by 30% on average, while also
improving segment labeling.

1 Introduction

A well-written document is rich not only in con-
tent but also in structure. One type of structure
is the grouping of content into topically coherent
segments. These segmented documents have many
uses across various domains and downstream tasks.
Segmentation can, for example, be used to con-
vert unstructured medical dictations into clinical
reports (Sadoughi et al., 2018), which in turn can
help with medical coding (since a diagnosis men-
tioned in a "Medical History" might be different
from a diagnosis mentioned in an "Intake" sec-
tion (Ganesan and Subotin, 2014)). Segmentation
can also be used downstream for retrieval (Hearst
and Plaunt, 2002; Edinger et al., 2017; Allan et al.,
1998), where it can be particularly useful when
applied to informal text or speech that lacks ex-
plicit segment markup. Topically segmented docu-
ments are also useful for pre-reading (the process
of skimming or surveying a text prior to careful
reading), thus serving as an aid for reading compre-
hension (Swaffar et al., 1991; Ajideh, 2003).

∗? Work done while interning at Adobe.

Uncovering latent, topically coherent segments
of text is a difficult problem because it requires
solving a chicken-and-egg problem: determining
the segment topics is easier if segment boundaries
are given, and identifying the boundaries of seg-
ments is easier if the topic(s) addressed in parts
of the document are known. Prior approaches to
text segmentation can largely be split into two cate-
gories that break the cycle by sequentially solving
the two problems: those that attempt to directly
predict segment bounds (Koshorek et al., 2018),
and those that attempt to predict topics per passage
(e.g., per sentence) and use measures of coherence
for post hoc segmentation (Hearst, 1997; Arnold
et al.; Eisenstein and Barzilay, 2008; Riedl and
Biemann, 2012; Glavaš et al., 2016). The benefit
of the topic modeling approach is that it can work
in unsupervised settings where collecting ground
truth segmentations is difficult and labeled data is
scarce (Eisenstein and Barzilay, 2008; Choi, 2000).
Recent work uses Wikipedia as a source of seg-
mentation labels by eliding the segment bounds
of a Wikipedia article to train supervised mod-
els (Koshorek et al., 2018; Arnold et al.). This
enables models to directly learn to predict segment
bounds or to learn sentence-level topics and per-
form post hoc segmentation.

Our work is motivated by the observation that the
segment bounds and topicality are tightly interwo-
ven, and should ideally be considered jointly rather
than sequentially. We start by examining three
properties about text segmentation: (1) segment
bounds and segment labels contain complementary
supervisory signals, (2) segment labels are a prod-
uct of lower level (e.g. sentence) labels which must
be composed, and (3) the model should not only
learn to label from ground-truth segmentations at
training time, but instead the labeler should learn to
be robust to segmentation errors. These properties
build on previous work discussed in Section 2. We
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experimentally evaluate and verify each of these
properties in Section 5 with respect to a document
segmentation and segment labeling task.

Taking advantage of these properties, we pro-
pose a neural model that jointly segments and la-
bels without committing to a priori segmentations,
Segment Pooling LSTM (S-LSTM). It consists of
three components: a segment proposal LSTM (dis-
cussed in Section 3.2), a segment pooling layer
(Section 3.3), and a segment aligner for training
and evaluation (Section 3.4).

Our main contribution is a model that performs
segmentation and labeling jointly rather than sep-
arately. By virtue of joint inference, our model
takes advantage of the complementary supervisory
signals for segmentation and topic inference, con-
siders the contribution of all sentences to the seg-
ment label, and avoids committing to early errors
in low-level inference.

Our approach improves over neural and non-
neural baselines of a document segmentation task.
We use a dataset of Wikipedia articles described
in Section 5 for training and evaluation. We show
that S-LSTM is capable of reducing segmentation
error by, on average, 30% while also improving
segment classification. We also show that these
improvements hold on out-of-domain datasets.

2 Related Work

Coherence-based Segmentation. Much work
on text segmentation uses measures of coherence
to find topic shifts in documents. Hearst (1997)
introduced the TextTiling algorithm, which uses
term co-occurrences to find coherent segments in
a document. Eisenstein and Barzilay (2008) intro-
duced BayesSeg, a Bayesian method that can in-
corporate other features such as cue phrases. Riedl
and Biemann (2012) later introduced TopicTiling,
which uses coherence shifts in topic vectors to find
segment bounds. Glavaš et al. (2016) proposed
GraphSeg, which constructs a semantic related-
ness graph over the document using lexical features
and word embeddings, and segments using cliques.
Nguyen et al. (2012) proposed SITS, a model for
topic segmentation in dialogues that incorporates a
per-speaker likelihood to change topics.

While the above models are unsupservised,
Arnold et al. introduced a supervised method
to compute sentence-level topic vectors using
Wikipedia articles. The authors created the Wiki-
Section dataset and proposed the SECTOR neural

model. The SECTOR model predicts a label for
each sentence, and then performs post hoc seg-
mentation looking at the coherence of the latent
sentence representations, addressing segmentation
and labeling separately. We propose a model ca-
pable of jointly learning segmentation boundaries
and segment-level labels at training time. Our seg-
mentation does not rely on measures of coherence,
and can instead learn from signals in the data, such
as cue phrases, to predict segment bounds, while
still performing well at the segment labeling task.

Supervised Segmentation. An alternative to us-
ing measures of topical coherence to segment text
is to learn to directly predict segment bounds
from labeled data. This was the approach taken
in Koshorek et al. (2018), where the authors used
Wikipedia as a source of training data to learn text
segmentation as a supervised task. However, learn-
ing only to predict segment bounds does not nec-
essarily capture the topicality of a segment that is
useful for informative labeling.

The task of document segmentation and label-
ing is well-studied in the clinical domain, where
both segmenting and learning segment labels are
important tasks. Pomares-Quimbaya et al. (2019)
provide a current overview of work on clinical seg-
mentation. Ganesan and Subotin (2014) trained a
logistic regression model on a clinical segmenta-
tion task, though they did not consider the task of
segment labeling. Tepper et al. (2012) considered
both tasks of segmentation and segment labeling,
and proposed a two-step pipelined method that first
segments and then classifies the segments. Our
proposed model is trained jointly on both the seg-
mentation and segment labeling tasks.

Concurrent work considers the task of document
outline generation (Zhang et al., 2019). The goal of
outline generation is to segment and generate (po-
tentially hierarchical) headings for each segment.
The authors propose the HiStGen model, a hierar-
chical LSTM model with a sequence decoder. The
work offers an alternative view of the joint segmen-
tation and labeling problem, and is evaluated using
exact match for segmentation and ROUGE (Lin,
2004) for heading generation if the segment is pre-
dicted correctly. In contrast, we evaluate our mod-
els using a commonly-used probabilistic segmenta-
tion measure, Pk, which assigns partial credit to in-
correct segmentations (Beeferman et al., 1999). We
also use an alignment technique to assign partial
credit to labels of incorrect segmentations, both for
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training and evaluation. In addition, we explicitly
consider the problem of model transferability, eval-
uating the pretrained models on additional datasets.

IOB Tagging. The problem of jointly learning
to segment and classify is well-studied in NLP,
though largely at a lower level, with Inside-Outside-
Beginning (IOB) tagging (Ramshaw and Marcus,
1999). Conditional random field (CRF) decoding
has long been used with IOB tagging to simulta-
neously segment and label text, e.g. for named
entity recognition (NER, McCallum and Li, 2003).
The models that perform best at joint segmenta-
tion/classification tasks like NER or phrase chunk-
ing were IOB tagging models, typically LSTMs
with a CRF decoder (Lample et al., 2016) until
BERT (Devlin et al., 2019) and ELMo (Peters et al.,
2018). Tepper et al. (2012) proposed the use of IOB
tagging to segment and label clinical documents,
but argued for a pipelined approach.

CRF-decoded IOB tagging models are more dif-
ficult to apply to the multilabel case. Segment
bounds need to be consistent across all labels, so
modeling the full transition from |L| −→ |L|
(where |L| is the size of the label space) at every
time step is computationally expensive. In con-
trast, our joint model performs well at multilabel
prediction, while also outperforming a neural CRF-
decoded model on a single-label labeling task.

3 Modeling

In order to jointly model document segmentation
and segment classification, we introduce the Seg-
ment Pooling LSTM (S-LSTM) model. S-LSTM is
a supervised model trained to both predict segment
bounds and pool over and classify the segments.
The model consists of three components: a sen-
tence encoder (Section 3.1), a segment predic-
tor LSTM (Section 3.2), and a segment pooling
network which pools over predicted segments to
classify them (Section 3.3). The segment predictor
is allowed to make mistakes that the labeler must
learn to be robust to, a process which we refer to as
exploration, and accomplish by aligning predicted
and ground truth segments (Section 3.4). The full
architecture is presented in Figure 1, and the loss
is discussed in Section 3.5.

3.1 Encoding Sentences
The first stage is encoding sentences. S-LSTM is
agnostic to the choice of sentence encoder, though
in this work we use a concat pooled bi-directional

LSTM (Howard and Ruder, 2018). First, the em-
bedded words are passed through the LSTM en-
coder. Then, the maximum and mean of all hidden
states are concatenated with the final hidden states,
and this is used as the sentence encoding.

3.2 Predicting Segment Bounds

The second step of our model is a Segment Pre-
dictor LSTM, which predicts segment boundaries
within the document. For this step we use a bidi-
rectional LSTM that consumes each sentence vec-
tor and predicts an indicator variable, (B)eginning
or (I)nside a segment. It is trained from pre-
segmented documents using a binary cross entropy
loss. This indicator variable determines if the sen-
tence is the start of a new segment or not. This
is similar to the approach taken by TextSeg in
Koshorek et al. (2018), though we do not estimate
a threshold, τ , and instead learn to to predict two
classes: (B)eginning and (I)nside.

3.3 Segment Pooling

After segmenting the document, the third stage of
the model pools within the predicted segments to
predict a label for each segment. The sentence
vectors for the predicted segments are all grouped,
and a pooling function is run over them. There are
several possible sequence-to-vector pooling func-
tions that could be used, such as averaging, and
more complex learned pooling functions, such as
LSTMs. The full S-LSTM model uses a concat
pooling LSTM, and our experimental results show
that this yields a better segment label than just av-
eraging. We then use a classifier following the
output of the segment pooler, which can provide a
distribution over labels for each segment.

The combination of segment prediction and pool-
ing is one way that S-LSTM is different from pre-
vious hierarchical LSTM models. The model can
predict and label segments dynamically, generating
a single vector for predicted segments.

3.4 Segment Alignment and Exploration

Because segments can be considered dynamically
at training time, we propose a method of assigning
labels to potentially incorrect segments by aligning
the predicted segments with ground truth segments.
This label assignment allows segment-labeling loss
to be propagated through the end-to-end model.

Teacher Forcing. Teacher forcing, or feeding
ground truth inputs into a recurrent network as
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1.	Embed	the	Words

2.	Encode	the	Sentences
				using	a	concat	pooled	LSTM.

3.	Propose	Segment	Bounds
				based	on	the	encoded	sentence
				representation	run	through	a	
				bi-directional	LSTM.

4.	Pool	over	Proposed	Segments
				to	generate	a	single	label	or	topic
				prediction	per	sentence	using	a
				concat	pooled	LSTM.

Figure 1: Segment Pooling LSTM (S-LSTM) architecture. The network first proposes segment bounds based on
text, and then pools over sentence representations in the proposed segment to generate a segment label.

opposed to model predictions, was first developed
in Williams and Zipser (1989). The idea is to use
ground truth predictions for inputs that would nor-
mally come from model predictions for the first
stages of training, to help with convergence. For
S-LSTM, it is the simplest approach to segment
pooling and alignment: at training time feed the
ground truth segments (as opposed to the predicted
segments) the segment pooler (step 3 in Figure 1).
This gives us a one-to-one alignment of "predicted"
(forced) segments and ground truth segments. This
is opposed to only using the predicted segments as
the bounds for segment pooler.

Exploration. Employing only teacher forcing
does not allow the segment labeler to learn how
to recover from errors in segmentation. The mech-
anism for allowing the model to explore incorrect
segmentations is to align the predicted segments
with overlapping ground truth segments at training
time, and treat the all aligned ground truth labels
as correct. While many alignments are possible,
we use the one presented in Figure 2. This many-
to-many alignment ensures that every ground-truth
segment is mapped to at least one predicted seg-
ment and every predicted segment is mapped to at
least one ground truth segment.

We can additionally schedule teacher forcing.
At the beginning, when the segmentation predic-
tion network performs poorly, the model pools over
only ground truth segment bounds, allowing it to
learn the cleanest topic representations. However,
as training progresses and the segmentation accu-
racy begins to converge, we switch from pooling
over ground truth segments to aligning predicted
and ground truth segment. In this way, the segment

pooler learns to be robust to segmentation errors.

3.5 Joint Training

To jointly train the model, we use a multi-task loss,

L(X, y; θ) =α · Lseg(X, yseg; θseg)+

(1− α) · Lcls(X, ycls; θcls, aligner),

where yseg are the labels for the segment prediction
LSTM and ycls are segment labels. In addition,
we pass in an aligner, which determines how to
align the predicted segments with the ground truth
segments to compute the loss, and either teacher
forces the model or allows it to explore.

4 Experimental Setup

We follow the experimental procedure of Arnold
et al. to evaluate S-LSTM for the tasks of document
segmentation and segment labeling.

4.1 Datasets

WikiSection. Arnold et al. introduced the Wiki-
Section dataset, which contains Wikipedia articles
across two languages (English and German) and
domains (Cities and Diseases). Articles are seg-
mented using the Wikipedia section structure. The
heading of each segment is retained, as well as a
normalized label for each heading type (e.g. His-
tory, Demography), drawn from a restricted label
vocabulary. There are two tasks: (1) jointly seg-
ment the document and assign a single restricted-
vocabulary label to the segment, and (2) predict the
bag-of-words in the title of the Wikipedia section
as a label. For instance, the bag-of-words label
for the title of this section would be the words:
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History

History HistoryPolitics

Geography

Economy

Politics Geography Economy

1.	Align	all	ground	truth	segments
				with	the	maximum	overlapping
				predicted	segment.	(↓)

2.	Align	unmatched	predicted	segments
				with	maximum	overlapping	ground
				truth	segments.	(↑)

Ground	Truth

Predicted

Figure 2: Greedy many-to-many alignment. This alignment is used to assign ground-truth labels to predicted
segments for training. Each ground truth segment first aligns to the maximally overlapping predicted segment;
each leftover predicted segment then aligns to the maximally overlapping ground truth segment.

1.	Slide	a	probe	of	length	k	over	the	items.

2.	Increase	a	counter	by	1	whenever:
				a.	the	items	are	in	the	same	segment	in	
								the	ground	truth,	but	not	the	predictions;	or
				b.	the	items	are	in	different	segments	in
								the	ground	truth,	but	not	the	predictions.

3.	Divide	the	counter	by	the	number	of
				measures	taken.

Ground	Truth

Predicted

...

+1 0 +1 0 0 0 +1 0 +1

Figure 3: Computing Pk. A sliding window of length k is run over the text, and a counter increments whenever the
same/different status for the two ends of the window doesn’t match in the ground truth and predicted segmentation.

[Dataset, Experimental, Setup].1 For the second
task, we post-process headers to remove stopwords,
numbers and punctuation. We then remove words
that occur fewer than 20 times in the training data
to get the final label vocabulary sizes.

Of note, we encountered a smaller label vocabu-
lary for the bag-of-words generation task than that
reported by Arnold et al.. For the four datasets, the
original reported sizes of the header vocabularies
were: [1.5k 1.0k, 2.8k, 1.1k]. When reproducing
earlier results, we verified with the dataset authors
that the actual sizes were: [179, 115, 603, 318].

The first task aligns closely with the clinical
domain, in which headers are typically drawn from
a fixed label set (Tepper et al., 2012). The second
aligns more closely with learning to segment and
label from naturally labeled data, such as contracts
or Wikipedia articles, which can potentially then
be transferred (Koshorek et al., 2018).
Wiki-50. The Wiki-50 dataset was introduced as
a test set in Koshorek et al. (2018), which also
introduced the full Wiki-727k dataset. The dataset
contains 50 randomly sampled Wikipedia articles,
segmented and with their headers, and was used to
evaluate computationally expensive methods such
as BAYESSEG (Eisenstein and Barzilay, 2008).
Cities and Elements. The Cities and Elements

1Subsection bags-of-words labels include the dominating
section heading.

datasets were introduced in Chen et al. (2009).
They provide two additional Wikipedia datasets
with both segmentation and segment headers.
Clinical. We use the Clinical Textbook dataset
from Eisenstein and Barzilay (2008), which has
segment boundaries but no headings.

4.2 Experimental Design

We evaluate S-LSTM with previous document seg-
mentation and segment labeling approaches on
all four WikiSection datasets— English-language
Diseases (en_disease), German-language Diseases
(de_disease), English-language Cities (en_city),
and German-language Cities (de_city)—for both
the single label and multi-label tasks.

Model Ablation. In order to understand the ef-
fect of our proposed segment pooling and segment
exploration strategies, we also include results for
simpler baselines for each of these modules. For
the segment labeling we report not only the full
S-LSTM model with LSTM pooling, but also addi-
tionally a mean pooling model, which we denote
with "-pool". For the segment exploration we re-
port not only the model with exploration, but also
a model only trained using teacher forcing, which
we denote with "-expl".

Model Transferability. To evaluate model trans-
ferability, we test models trained on the English
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Żelechów is located near border of Masovian and Lublin Voivodeships .
During the period between 1975 - 1998 Żelechów was in Siedlce Voivodship .
Before 1795 , Żelechów had strong connections with Lesser Poland .
So it is located between three geographical regions : Podlaskie , Lubelszczyzna and Masovia .

The surrounding landscape was formed during the ice age when the whole area was covered with ice .
The landscape now is gently waved , and the town itself is located on a hill , making its altitude vary from up to .
The area around Żelechów is surrounded by fields and few forests .

The area of the town is 1214 hectares ( 12,14 km² ) .
This is much more than the actual built - up area :
77,8 % ( 945 ha ) of the whole area is agriculture usage , 3,6 % ( 43 ha ) of the area are forests , and 18,6 % ( 226 ha ) is unused or built up .

Żelechów is 65th town in Masovian Voivodship in respect of number of inhabitants ( with total number of towns in Masovian Voivodship of 85 ) .
It is the smallest town in Garwolin County .
In 2006 number of inhabitants of the town of Żelechów made 47,7 % of the total population of Gmina Żelechów .
Detailed demography information from December 31 , 2006 :

Poles are dominant nation in the town , there is also a group of the Romani people .

The name was used in the time of Middle Ages .
It can be found in a document ( written in time between 1335 and 1342 ) as Zelechov .
In a later document written by Jan Długosz ( 1470–1480 ) as Zyelyechow .
The name derives from the Polish forename Żelech , which is a simplified form of Żelisław .

Names in other languages :

- Russian : Желехув

- Hebrew : ז'לחוב , ז'ליחוב

- Yidish : זשעלעכאָוו , זשעליכאָוו

The first record of Żelechów dates back to 1282 , and the city rights were gained in 1447 .
Żelechów was a private town , first owned by the family of Ciołek ( who later changed their surname to Żelechowski ) .
It was a local center of trade and an important city until the Deluge ( the war with Sweden ) .
At that time the town was greatly devastated , and dozens of people died ( also due to diseases ) .
In the first half of the 17th century Jews first settled in Żelechów .
The owners of the town changed frequently , one of them was
Ignacy Wyssogota Zakrzewski - the first President of Warsaw .

After the Partitions of Poland Żelechów belonged to Austria .
Then in the time of the Napoleonic Wars it was within the borders of the Duchy of Warsaw , and after the Congress of Vienna it was finally placed in Congress Poland , which was in fact controlled by Russia .
Joachim Lelewel was a deputy to the Sejm from Żelechów county in years 1828 - 1831 .
Romuald Traugutt lived here in 1845 , he served as officer of a ruff of sappers .
During the January Uprising near Żelechów , few skirmishes took place .

After the uprising the Russian government took the decision to punish those who fought against them , who were generally nobility .
Nearby peasants received land ( which later belonged to nobility ) , and the city from that time onward was not owned by a single person .
To keep the peace in the area , two cavalry companies and an artillery unit were placed in Żelechów .
They brought prosperity , because their needs had to be supported by the townspeople .
In that time , Żelechów started to be especially well known as a shoe production center .

In 1880 a great fire burned a large part of the town , but it was rebuilt quickly with brick houses replacing wooden ones .
In 1919 about 7,800 inhabitants lived in the city .
During the interwar period about 800 firms resided in Żelechów ( mainly shops and handicrafts ) .
In 1939 in Żelechów lived about 8,500 inhabitants , who were mostly Jews ( 5,800 people ) .
Before the Great Wars , many Jews fled to America , mainly to Costa Rica , where they founded a new Jewish community .

When the Nazi Germany occupied Poland , a ghetto was created in a small area in the city , placing about 10,000 Jews there , mainly from Żelechów but also from other cities of Poland .
In September 1942 , the liquidation of the ghetto began , where people were transported to Treblinka extermination camp , but due to the chaos many tried to escape .
About 1,000 died in Żelechów this time shot by German soldiers .

On July 17 of 1944 the Red Army entered Żelechów , ending the war there .
Only 50 Jews remained alive in the city .
At this time about 4,000 people lived in Żelechów , and this number has not changed much to this day .

Żelechów is a centre supporting nearby farmers .
There are over 500 firms in the town , mainly small family shops , handicrafts or service .
Bigger firms work in the fields of machinery , footwear and the floor industry .

Żelechów is a local centre of education , up to secondary school .
There are many schools offering education in different areas of knowledge .

The city is from European route E372 , which runs from Warsaw to Lviv .
The voivodship road 807 passes through the town .
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Figure 4: A randomly selected document from the en_cities test set, with the output of SECTOR (left) and S-
LSTM (right). Green lines are a correctly predicted segment bound, red lines are false positive bound predictions,
and yellow dashed lines are false negatives. For each segment, the top 1-2 predicted terms are also shown. Terms
are bold green if they appear in the maximally overlapping segment in the ground truth, underlined red if they are
false positive terms, and italicized yellow if they are false negatives. S-LSTM does not predict any false positive
segment bounds, and makes only a small number of labeling errors compared with the SECTOR baseline.

WikiSection tasks (en_disease and en_city) on the
Cities, Elements, Wiki-50, and Clinical datasets.

4.3 Evaluation Measures

Segmentation: Pk. Pk is a probabilistic measure
(Beeferman et al., 1999) that works by running a
sliding window of width k over the predicted and
ground truth segments, and counting the number of
times there is disagreement about the ends of the
probe being in the same or different sections (see
Figure 3). The number of disagreements is then
divided by the total number of window positions,
resulting in a score normalized between 0 and 1.
Our segmentation results are reported setting k to
half the average size of ground truth segments.

Classification: F1, MAP, and Prec@1. For
classification, we report three different measures,
depending on the task. For the single label
tasks, we report F1 and Mean Average Precision
(MAP). For evaluating the bag-of-words (multi-
label) tasks, we report Precision at the first rank
position (Prec@1) and MAP. In both cases, these
are computed by first aligning the predicted seg-
ments with the ground truth segments as shown in
Figure 2 and described in Section 3.4. In all cases,
the metrics are micro-averaged.

4.4 Baselines

We report C99 (Choi, 2000), TopicTiling (Riedl
and Biemann, 2012), and TextSeg (Koshorek et al.,
2018) as baselines on WikiSection segmentation.
For a neural baseline, we report the SECTOR
model (Arnold et al.) with pre-trained embeddings,
denoted in the paper as SEC>T,H+emb. For the ad-
ditional datasets, we report GraphSeg (Glavaš et al.,

2016), BayesSeg (Eisenstein and Barzilay, 2008)
and pretrained TextSeg and SECTOR models.

In addition, we implemented an LSTM-LSTM-
CRF IOB tagging model following Lample et al.
(2016). This is only used for the single-label exper-
iments, as CRF-decoded IOB tagging models are
more difficult to apply to the multilabel case.

4.5 Model Setup

For each task and dataset, we use the same set of hy-
perparameters: Adam optimizer (Kingma and Ba,
2015) with learning rate 0.001 and weight decay
0.9. Dropout (Srivastava et al., 2014) is applied af-
ter each layer except the final classification layers;
we use a single dropout probability of 0.1 for every
instance. For models with exploration, we employ
teacher forcing for 10 epochs. Model weights are
initialized using Xavier normal initialization (Glo-
rot and Bengio, 2010). All LSTM hidden-layer
sizes are set to 200. We use fixed 300-dimensional
FastText embeddings (Bojanowski et al., 2017) for
both English and German, and project them down
to 200 dimensions using a trainable linear layer.

5 Results and Analysis

There are five major takeaways from the experimen-
tal results and analysis. First, the jointly trained
S-LSTM model shows major improvement over
prior work that modeled document segmentation
and segment labeling tasks separately. Second, seg-
ment alignment and exploration during training re-
duces error rates. Third, the segment pooling layer
leads to improvements for both segmentation and
segment labeling. Fourth, S-LSTM outperforms
an IOB-tagging CRF-decoded model for single la-
bel segment labeling, and also generalizes easily
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WikiSection-topics
single-label classification

en_disease
27 topics

de_disease
25 topics

en_city
30 topics

de_city
27 topics

model configuration ↓ Pk ↑ F1 ↑ MAP ↓ Pk ↑ F1 ↑ MAP ↓ Pk ↑ F1 ↑ MAP ↓ Pk ↑ F1 ↑ MAP

C99 37.4 n/a n/a 42.7 n/a n/a 36.8 n/a n/a 38.3 n/a n/a
TopicTiling 43.4 n/a n/a 45.4 n/a n/a 30.5 n/a n/a 41.3 n/a n/a
TextSeg 24.3 n/a n/a 35.7 n/a n/a 19.3 n/a n/a 27.5 n/a n/a
SEC>T+emb 26.3 55.8 69.4 27.5 48.9 65.1 15.5 71.6 81.0 16.2 71.0 81.1
LSTM-LSTM-CRF 23.9 57.2 n/a 23.6 51.4 n/a 9.7 77.5 n/a 10.2 74.0 n/a
S-LSTM 20.0 59.3 72.4 18.8 55.6 69.0 9.1 76.1 83.5 9.5 76.5 84.5

Table 1: WikiSection results. Baselines are TopicTiling (Riedl and Biemann, 2012), TextSeg (Koshorek et al.,
2018), and C99 (Choi, 2000), and the best neural SECTOR models from Arnold et al..

WikiSection-headings
multi-label classification

en_disease
179 topics

de_disease
115 topics

en_city
603 topics

de_city
318 topics

model configuration ↓ Pk ↑ Prec@1 ↑ MAP ↓ Pk ↑ Prec@1 ↑ MAP ↓ Pk ↑ Prec@1 ↑ MAP ↓ Pk ↑ Prec@1 ↑ MAP

C99 37.4 n/a n/a 42.7 n/a n/a 36.8 n/a n/a 38.3 n/a n/a
TopicTiling 43.4 n/a n/a 45.4 n/a n/a 30.5 n/a n/a 41.3 n/a n/a
TextSeg 24.3 n/a n/a 35.7 n/a n/a 19.3 n/a n/a 27.5 n/a n/a
SEC>H+emb 30.7 50.5 57.3 32.9 26.6 36.7 17.9 72.3 71.1 19.3 68.4 70.2
S-LSTM 19.8 53.5 60.3 18.6 36.2 46.1 9.0 73 71.3 8.2 74.1 75.1

S-LSTM, -expl 20.8 52.1 59 19.1 34.7 44.8 9.2 72.7 70.8 8.5 73.8 74.4
S-LSTM, -expl, -pool 21.2 52.3 59.5 19.8 34.4 45 10.4 69.7 67.2 10.2 64.1 66.7

Table 2: WikiSection headings task results, which predicts a multi-label bag-of-words drawn from section headers.
To show the effect of the segment pooling and model exploration used in S-LSTM we report two variants where
-expl uses only teacher forcing and -pool uses only mean pooling.

and tractably to multi-labeling. Fifth, a deeper
analysis of the joint modeling demonstrates that
segment labeling and segment bound prediction
contain complementary information.

5.1 Structure Predicts Better Structure

Tables 1 and 2 show that by explicitly predicting
segment bounds we can improve segmentation by
a large margin. On the header prediction task (Ta-
ble 2), we reduced Pk by an average of over 30%
across the WikiSection datasets. Pk was consistent
across both WikiSection tasks, and did not degrade
when going from single-label to multi-label predic-
tion, as Arnold et al. had found. This shows that
we can achieve a more robust segmentation through
jointly modeling segmentation and labeling. This
is also clear from Figure 4, where S-LSTM predicts
a much more accurate segmentation.

5.2 Exploration Allows Error Recovery

The results of an ablation experiment (Table 2, bot-
tom) show that there is an additional classification
gain by allowing the model to explore recovering
from segmentation errors. Exploration has the im-
portant property of allowing the model to optimize
more closely to how it is being evaluated. This
follows from a long line of work in NLP that shows

that for tasks such as dependency parsing (Balles-
teros et al., 2016), constituency parsing (Goodman,
1996), and machine translation (Och, 2003), all
show improvements by optimizing on a loss that
aligns with evaluation.

The teacher forcing was important at the begin-
ning of model training. When training variants
of S-LSTM that did not use teacher forcing at the
beginning, which instead could explore the bad seg-
mentation, the segmentation failed to converge and
the model performed universally poorly.

5.3 S-LSTM Can Take Advantage of Both of
These, Plus Segment Pooling

S-LSTM is capable of taking advantage of the com-
plementary information by jointly learning to seg-
ment and label. It is capable of learning to recover
from segmentation errors by exploring towards the
end of training. But the ablation study shows that
there is one more important component of S-LSTM
that allows it to improve over previous baselines:
LSTM pooling over segments. The addition of the
segment pooling layer improves MAP and Prec@1
across all four datasets in the heading prediction
task (Table 2), comparing the model without explo-
ration (S-LSTM,-expl) with the model without ex-
ploration (which uses average pooling: S-LSTM,-
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Segmentation Wiki-50 Cities Elements Clinical

and multi-label classification ↓ Pk ↑ MAP ↓ Pk ↑ MAP ↓ Pk ↑ MAP ↓ Pk

GraphSeg 63.6 n/a 40.0 n/a 49.1 n/a –
BayesSeg 49.2 n/a 36.2 n/a 35.6 n/a 57.8
TextSeg 18.2* n/a 19.7* n/a 41.6 n/a 30.8
SEC>H+emb@en_disease – – – – 43.3 9.5 36.5
SEC>H+emb@en_city 40.5 13.4 33.3 53.6 41.0 7.9 –
S-LSTM@en_city 22.7 16.6 21.2 54.2 34.5 11.0 –
S-LSTM@en_disease – – – – 30.2 19.1 36.1

Table 3: Transfer results across four datasets. Those marked * are trained on the training portion of the correspond-
ing dataset, whereas those without are either unsupervised or trained on a different dataset. For the Wiki-50, Cities,
and Elements datasets, S-LSTM outperforms all models not trained on corresponding training set.

WikiSection-headings
multi-label classification

de_disease
115 topics

model configuration ↓ Pk ↑ P@1 ↑ MAP

S-LSTM, w/o Segment Prediction n/a 42.3 52.1
S-LSTM, w/ Segment Prediction 19.1 43.3 53.3

Table 4: A model trained to jointly predict segment
bounds and segment labels improves classification over
a baseline which only predicts labels. Both are given
oracle segment bounds and do not use exploration.

WikiSection-headings
document segmentation

de_disease
115 topics

model configuration ↓ Pk ↑ P@1 ↑ MAP

S-LSTM, w/o Segment Labeling 21.8 n/a n/a
S-LSTM, w/ Segment Labeling 19.1 34.7 44.8

Table 5: Inverse of the experiment in Table 4. A model
that jointly predicts segment bounds and labels outper-
forms a model that only predicts segment bounds.

expl,-pool). It is the combination of these three
improvements that comprise the full S-LSTM.

5.4 S-LSTM Outperforms a CRF Baseline

In Table 1, the results demonstrate that S-LSTM
outperforms LSTM-LSTM-CRF baseline in almost
every case for single-labeling, and in every case
for segmentation. This makes S-LSTM a useful
model choice for cases like clinical segmentation
and labeling, where segments are drawn from a
small fixed vocabulary. S-LSTM also generalizes
easily to multi-label problems, in contrast to an
IOB-tagging LSTM-LSTM-CRF, since it only re-
quires changing the segment-pooling loss from
cross-entropy to binary cross-entropy.

5.5 Predicting Structure Predicts Better
Labels (and vice versa)

Though we compare with TextSeg (a neural model
that predicts segment bounds) and SECTOR (a neu-
ral model that predicts sentence labels and post hoc
segments them) and show improvements compared
to both models, we also directly test the hypothesis
that the segmentation and segment labeling tasks
contain complementary information. To do so, we
conduct two experiments: (1) we fix the segment
bounds at training and evaluation time, only train-
ing the model to label known segments (results in
Table 5); and (2) we only have the model predict
segment bounds (results in Table 4).

In both cases, the addition of the loss from the
companion task improves performance on the main
task. This shows that the two tasks contain com-
plementary information, and directly validates our
core hypothesis that the two tasks are tightly inter-
woven. Thus, considering them jointly improves
performance on both tasks.

6 Conclusion and Future Work

In this paper we introduce the Segment Pooling
LSTM (S-LSTM) model for joint segmentation
and segment labeling tasks. We find that the model
dramatically reduces segmentation error (by 30%
on average across four datasets) while improving
segment labeling accuracy compared to previous
neural and non-neural baselines for both single-
label and multi-label tasks. Experiments demon-
strate that jointly modeling the segmentation and
segment labeling, segmentation alignment and ex-
ploration, and segment pooling each contribute to
S-LSTM’s improved performance.

S-LSTM is agnostic as to the sentence encoder
used, so we would like to investigate the potential
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usefulness of transformer-based language models
as sentence encoders. There are additional engi-
neering challenges associated with using models
such as BERT as sentence encoders, since encod-
ing entire documents can be too expensive to fit on
a GPU without model parallelism. We would also
like to investigate the usefulness of an unconsid-
ered source of document structure: the hierarchical
nature of sections and subsections. Like segment
bounds and headers, this structure is naturally avail-
able in Wikipedia. Having shown that segment
bounds contain useful supervisory signal, it would
be interesting to examine if segment hierarchies
might also contain useful signal.
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