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Abstract

Similarity search is to find the most similar
items for a certain target item. The ability of
similarity search at large scale plays a signif-
icant role in many information retrieval appli-
cations and has received much attention. Text
hashing is a promising strategy, which uti-
lizes binary encoding to represent documents,
and is able to obtain attractive performance.
This paper makes the first attempt to utilize
Bayesian Clustering for Text Hashing, dubbed
as BCTH. Specifically, BCTH can map doc-
uments to binary codes by utilizing multiple
Bayesian Clusterings in parallel, where each
Bayesian Clustering is responsible for one bit.
Our approach employs the bit-balanced con-
straint to maximize the amount of information
in each bit. Meanwhile, the bit-uncorrelated
constraint is adopted to keep independence
among all bits. The time complexity of
BCTH is linear, where the hash codes and
hash functions are jointly learned. Based on
four widely-used datasets, the experimental re-
sults demonstrate that BCTH is competitive
compared with currently competitive baselines
from the perspective of both precision and
training speed.

1 Introduction

The task of similarity search, also called nearest
neighbor search, aims to find the most similar ob-
jects for a given query item (Gionis et al., 1999;
Andoni and Indyk, 2006). It plays a significant role
in many information retrieval applications, such as
document clustering, content-based retrieval, col-
laborative filtering (Wang et al., 2016), etc. With
the development of many intelligent terminals, mas-
sive textual data has been produced over the past
several decades. Huge challenges exist in applying
text similarity algorithms (Conneau et al., 2017;
Le et al., 2018) to large-scale corpora, since these

⇤means the corresponding author.

methods require complicated numerical computa-
tion.

Text hashing (Severyn and Moschitti, 2015) is
a promising strategy and has obtained much atten-
tion. It maps semantically similar documents to
hash codes with similar semantics through design-
ing binary codes in a low-dimensional space. A
hashing representation of each document usually
needs only a few bits to be stored. The calculation
of the similarity between two hash codes can be
executed by a bit-wise XOR operation. Therefore,
text hashing is an effective strategy to accelerate
similarity queries and reduce data storage.

Most of the traditional text hashing methods con-
sist of two stages (Zhang et al., 2010; Lin et al.,
2014b; Severyn and Moschitti, 2015). The first
step is to learn hash code, preserving similarity
among neighbors. Then the hash function is trained
through the self-taught method, with the text fea-
tures and hash codes as the input (Wang et al.,
2013b). However, for m documents, O(m

2
) train-

ing time complexity is needed to generate the pair-
wise similarity matrix used to preserve the similar-
ity information. On the other hand, due to the suc-
cess of deep learning, researchers have attempted
to study text hashing through deep neural networks
(Xu et al., 2015). Some of the most representa-
tive works include VDSH (Chaidaroon and Fang,
2017) and NASH (Kalchbrenner et al., 2014). The
NASH model studies text hashing through an end-
to-end Neural Architecture, which treats the hash
codes as the latent factor. The VDSH model intro-
duces a latent factor for documents to capture the
semantic information. Even though these methods
have achieved attractive performance, the training
time is unsatisfactory, making them unscalable to
large-scale datasets.

Motivated by the above observations, this paper
attempts to utilize Bayesian Clustering for Text
Hashing, dubbed as BCTH. Specifically, BCTH
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can map documents to binary codes by using mul-
tiple Bayesian Clusterings in parallel, where each
Bayesian Clustering is responsible for one bit.
Our approach employs the bit-balanced constraint
to maximize the amount of information in each
bit. Meanwhile, the bit-uncorrelated constraint is
adopted to keep independence among all bits. Ex-
perimental results prove that our approach is com-
petitive in the perspective of both precision and
training speed.

Our contributions are summarized as follows:

• We propose a novel Text Hashing based on the
Bayesian Clustering framework, dubbed as
BCTH, for learning effective hash codes from
documents. To the best of our knowledge,
this is the first work that utilizes Bayesian
Clustering in text hashing.

• The time complexity of our method is linear,
where the hash codes and hash function are
jointly learned. What’s more, we visualize the
hash codes and prove that BCTH can obtain
effective semantics from the original docu-
ments.

• We conduct extensive experiments on four
public text datasets. Based on four widely-
used datasets, the experimental results demon-
strate that BCTH is competitive compared
with currently competitive baselines from the
perspective of both precision and training
speed.

2 Model

The approach of our proposed BCTH is introduced
in this section. As is shown in Fig. 1, BCTH is
a general learning idea, which utilizes Bayesian
Clustering that is based on the latent factor frame-
work in Text Hashing. BCTH can map documents
to binary codes by using multiple Bayesian Clus-
terings in parallel, where each Bayesian Clustering
is responsible for one bit. During this process, the
bit-balanced constraint is to maximize the amount
of information in each bit. Meanwhile, the bit-
uncorrelated constraint is adopted to keep indepen-
dence among all bits.

2.1 Preliminaries
Given a set of m documents X = {x(i)}mi=1, where
x
(i) is the feature representation of the i-th docu-

ment. The binary code for the i-th document is

expressed as b(i) = {b(i)k , b
(i)
k 2 {�1, 1}}rk=1, and

r is the length of the hash codes. Unlike the exist-
ing approaches (Liu et al., 2011; Zhang et al., 2010;
Xu et al., 2015) that aim to preserve the pair-wise
similarity among all the documents, we use Naive
Bayes to extract the semantic information of the
i-th document as:

P
⇣
b(i)k = ck|x(i)

⌘
=

P
⇣
x(i)|b(i)k = ck

⌘
P
⇣
b(i)k = ck

⌘

P (x(i))
(1)

The Naive Bayes method assumes the conditional
independence for the conditional probability dis-
tribution, and therefore, we obtain the following
equation:

P
⇣
x(i)|b(i)k = ck

⌘
=

nY

j=1

P (wj = l(i)j |b(i)k = ck) (2)

where ck represents the k-th bit’s value of the
hash codes of the i-th document, ck 2 {�1, 1},
and n is the size of the vocabulary. The l(i)j denotes
whether the j-th word of the vocabulary appears in
the i-th document, and l

(i)
j 2 {0, 1}.

The previous formula adopts the cumulative mul-
tiplication of all words’ probabilities to calculate
the likelihood of a particular document. However,
since many words will not appear in a specific doc-
ument, to avoid redundant calculation, we consider
using the cumulative multiplication of the proba-
bilities of words that appear in that particular docu-
ment to calculate the probability of that document.

P
⇣
x(i)|b(i)k = ck

⌘
=

Y

j2�(i)

P (wj = 1|b(i)k = ck) (3)

In the above equation, �(i) is a set of words
that appear in the i-th document. Each hash code
can be learned through an unsupervised iteration
process. By utilizing multiple Bayesian Clusterings
to calculate all hash codes of documents in parallel,
we obtain the following objective function:

P (B|X) =
P (X|B)P (B)

P (X)
(4)

where hash codes of documents are expressed as
B={b(i)k , k = 1, 2..r, i = 1, 2..,m}.

In order to obtain high-quality hash codes, the
bit-balanced and the bit-uncorrelated constraints
are introduced. In addition, we transform the prob-
ability from the interval [0, 1] to the interval [�1, 1]
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Figure 1: Illustration of how to learn the hash codes through multiple Bayesian Clusterings jointly from m docu-
ments. The size of hash codes in the illustration is r = 4.

by the function f(P )= 2P �1 . Therefore, we ob-
tain the following loss function:

min

rX

k=1

mX

i=1

���b(i)k � p
(i)
k

���
2
() kB�Pk

s.t.B 2 {�1, 1}r⇥m

B1 = 0,BBT
= mIr⇥r

(5)

where p
(i)
k = f

⇣
P (b

(i)
k = ck|x(i))

⌘
and P =

{p(i)k , k = 1, 2..r, i = 1, 2..,m}. The 1 denotes a
vector with all of its elements equal to 1. The equal-
ity B1 = 0 denotes the bit-balanced constraint,
which aims to maximize the amount of information
in each bit. The equality BBT

= mIr⇥r denotes
the bit-uncorrelated constraint, aiming to keep the
independence among all bits.

However, the Eq. (5) is difficult to solve directly.
Following the prior work in discrete graph hashing
(Liu et al., 2014), let us define the constraint space
as ⌦ =

�
Y 2 Rr⇥m|Y1 = 0,YYT

= mIr⇥r
 

.
Then we formulate a more general framework
which softens the two hard constraints in Eq. (5)
as:

min kB�Pk2 + � kB�Yk2

s.t.B 2 {�1, 1}r⇥m

Y1 = 0,YYT
= mIr⇥r

(6)

where � � 0 is a hyper parameter and Y is relax-
ation factor. If problem (5) is feasible, we can en-
force B1 = 0,BBT

= mIr⇥r in Eq.(5) by setting
an extremely large value to �, thereby converting
problem (6) into problem (5).

2.2 Learning
The learning process aims to find the desirable hash
codes that can optimize the Eq. (6). Similar to (Liu

et al., 2014), we utilize a tractable alternating min-
imization algorithm, which is an unsupervised it-
eration process, including alternately solving three
sub-problems.

W-subproblem: Let us initialize the hash codes
B randomly, and the parameter W = {p(wj =

1|bk = ck), p(bk = ck)}, j 2 {1, 2, ..., n}, k 2
{1, 2, ..., r} can be calculated by Naive Bayes. The
document is represented by the one-hot method.
The variable P is calculated in the following way,
specifically, through the conditional probability and
prior probability. The formula is as follow:

p(bk = ck) =

Pm
i=1 I(b(i)k = ck)

m
, k 2 {1, 2, ..., r}

(7)

where the p(bk = ck) is the ratio of the number
of documents with the k-th hash code equal to ck

to the total number of documents. I is the indica-
tor function. If the input value is true, it returns
1, else returns 0. The calculation process of the
conditional probability P (wj = 1|bk = ck), which
includes the strategy of Laplace smoothing, is as
follow:

P (wj = 1|bk = ck) =

Pm
i=1 I(w(i)

j = 1 \ b
(i)
k = ck) + 1

Pn
j=1

Pm
i=1 I(w(i)

j = 1 \ b
(i)
k = ck) + n

(8)

where
Pm

i=1 I(w(i)
j = 1 \ b

(i)
k = ck) is the num-

ber of documents whose k-th hash code value is
ck, which contains the word wj . The ” \ ” symbol
means ”and”.
Y-subproblem: Given the value of B, the con-

tinuous variable Y can be calculated by Eq. (10),
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the details are as follows:

min
Y

kB�Yk2 () min
Y

2(m� tr(BTY))

s.t.Y1 = 0,YYT
= mIr⇥r

(9)

Where tr is solving the trace of a matrix and
Ir⇥r is an identity matrix.

Minimizing 2(m � tr(BTY)) is equivalent to
maximizing the trace of the BTY, and it can be
solved by performing singular value decomposi-
tion (SVD) operation on the matrix B where every
element is calculated by: b(i)k = b

(i)
k � 1

m

Pm
i=1 b

(i)
k .

The Ub and Vb, therein satisfying [Vb 1]T bVb = 0,
are stacked by the left and right singular vectors
respectively from the result of SVD. After perform-
ing Gram-Schmidt process on Ub and Vb, we ob-
tain Ub and Vb. Finally, according to (Zhang et al.,
2016), the Y is updated by:

Y =
p
m

h
Ub

bUb

i h
Vb

bVb

iT
(10)

B-subproblem: Given the value of P and the
continuous variable Y, the value of B can be cal-
culated by minimizing Eq. (12), and the details are
as follows:

min
B

kB�Pk2 + � kB�Yk2

s.t.B 2 {�1, 1}r⇥m
(11)

Since Eq. (12) is a simple binary optimization
process, we can update B by updating each element
of it in parallel according to:

b(i)
k = argmin

b
(i)
k 2{�1,1}

���b(i)
k �p(i)

k

���
2
+�

���b(i)
k �y(i)

k

���
2

(12)

The whole algorithm implementation process is
shown in algorithm 1.

2.3 Complexity Analysis
In this section, we analyze the space and time com-
plexity of BCTH. The learning algorithm of BCTH
is shown in Algorithm 1. For space complexity,
Algorithm 1 requires O (mn+mr + nr) to store
the training datasets, hash codes, and parameters.
As r is usually less than 1024, we can easily store
the above variables at large-scale in memory.

For time complexity, we first analyze each of
the sub-problems. For W-subproblem, it takes
O(mnr) to calculate parameter W and update

Algorithm 1: Learning algorithm of BCTH
Input :Training data: X 2 Rm⇥n

code length: r
hyperparameter: �;

Output :W = {p(wj = 1|bk =

ck), p(bk = ck)}, j 2
{1, 2, ..., n}, k 2 {1, 2, ..., r};

1 Initialize: B by randomization;
2 repeat
3 W-step:
4 Solve W and P in W-subproblem
5 Y-step:
6 Solve Y in Y-subproblem
7 B-step:
8 Solve B by B-subproblem
9 until convergence;

10 return W,B;

probability P. For Y-subproblem, it requires
O(r

2
n) to perform the SVD, Gram-Schmidt or-

thogonalization, and matrix multiplication. For
B-subproblem, it requires O(mn) to update each
b(i)
k of B. The time complexity of the whole Al-

gorithm 1 is O(t(mnr + r
2
n +mn)), where t is

the number of iterations needed for convergence.
In our experiments, t is set to 10 by default (See
section 3.8). It can be seen that the time complexity
of BCTH is linear.

3 Experiments

3.1 Datasets
Following prior works (Chaidaroon and Fang,
2017), we experiment on four public text datasets.

• Reuters Corpus Volume I (RCV1): The
RCV1 is a large collection of manually labeled
800,000 newswire stories provided by Reuters.
The full-topics version is available at the LIB-
SVM website1.

• Reuters21578 (Reuters)2: This dataset is a
widely-used text corpus for text classification.
This collection contains 10,788 documents
with 90 categories and 7,164 unique words.

• TMC3: This dataset has 22 labels, 21,519
1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

multilabel.html
2http://www.nltk.org/book/ch02.html
3https://catalog.data.gov/dataset/siam-2007-text-mining-

competition-dataset
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training set, 3,498 test set, and 3,498 docu-
ments for the validation set. This dataset is
used as part of the SIAM text mining compe-
tition and contains the air traffc reports pro-
vided by NASA.

• 20Newsgroups4: The 20 Newsgroups dataset
is a collection of 18828 newsgroup documents.
It is divided into different newsgroups, each
corresponding to a specific topic.

3.2 Baselines and Evaluation Metrics
We compare BCTH with the following competitive
unsupervised methods since BCTH also belongs to
unsupervised methods.

• LSH: This approach applies (Datar et al.,
2004) random projections as the hash function
to transform the data points from its original
space to the binary hash space. More hash bits
are needed to guarantee the precision on ac-
count of the randomness of the hash function.

• SH: This baseline (Weiss et al., 2008) calcu-
lates the bits through thresholding a subset of
eigenvectors of the Laplacian of the similarity
graph.

• STH: STH (Zhang et al., 2010) aims to find
the best l-bit binary codes for all documents
in the corpus via unsupervised learning.

• AGH: This method (Liu et al., 2011) discov-
ers the neighborhood structure hidden in the
data to learn proper compact codes. To make
the method computationally feasible, it uti-
lizes Anchor Graphs to gain tractable low-
rank adjacency matrices.

• VDSH: (Chaidaroon and Fang, 2017)
presents a series of deep learning models
for text hashing, including VDSH, VDSH-S,
and VDSH-SP. The VDSH-S and VDSH-SP
models are supervised by utilizing document
labels/tags for the hashing process. For the
comparison’s fairness, the VDSH is adopted
as the baseline since our method is also
unsupervised.

To better evaluate the effectiveness of hash codes
used in the field of similarity search, every docu-
ment in the test set is adopted as the query docu-
ment. The similarity between the query document

4http://ana.cachopo.org/datasets-for-single-label-text-
categorization

and each target similar document, which is utilized
to retrieve relevant documents, is calculated by
the Hamming distance of their hash codes respec-
tively. The performance is measured by Precision,
which is the ratio of the number of the similar doc-
uments to the number of total retrieved documents.
The retrieved document that shares any common
test label with the query document is denoted as
a relevant document. Similar to previous works
(Chaidaroon and Fang, 2017), the precision for the
top 100 (pre@100) is employed as the main crite-
rion. The final results are averaged over all the test
documents.

3.3 Experimental Setup
We randomly split each dataset into two subsets for
training and testing, which account for 90% and
10%, respectively. The training data is used to learn
the mapping from the document to the hash code.
Each document in the test set is used to retrieve
similar documents based on the mapping, and the
results are evaluated. The similar as (Chaidaroon
and Fang, 2017), we use one-hot encoding as the
default representation of the raw document. The
hyper-parameter � = [0, 0.001, 0.01, 0.1], where
the number in bold denotes the default setting (see
Section 3.7). The number of iterations is set to 10

(see Section 3.8). Our codes are available at the
open-source code repository 5.

In addition, the settings of the SH6, AGH7, STH8

and VDSH9 remain unchanged with original paper.
We run five trials for each methods and an average
of five trials is reported to avoid bias introduced
by randomness. All of the methods are run on
Windows with 1 Intel i7-7500 CPU and 1 GeForce
GTX 1050Ti GPU.

3.4 Comparison Results
To examine the competitiveness of BCTH, we com-
pared our method with competitive baselines, in-
cluding traditional techniques and deep learning
models from the perspective of both precision and
training speed.

Table 2 reports the training time on the 20News-
groups dataset. From the table, we can derive the
following interesting conclusions: (1) Compared

5https://github.com/myazi/SemHash
6https://github.com/superhans/SpectralHashing
7https://github.com/ColumbiaDVMM/Anchor-Graph-

Hashing
8http://www.dcs.bbk.ac.uk/ dell/publications/dellzhang sigir2010/

sth v1.zip
9https://github.com/unsuthee/VariationalDeepSemanticHashing
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Table 1: Precision of the top 100 retrieved documents on four datasets with different numbers of hashing bits. The
bold font denotes the best result at that number of bits.

Methods
RCV1 Reuters

8bits 16bits 32bits 64bits 128bits 8bits 16bits 32bits 64bits 128bits
LSH 0.4180 0.4352 0.4716 0.5214 0.5877 0.2802 0.3215 0.3862 0.4667 0.5194

SH 0.5321 0.5658 0.6786 0.7337 0.7064 0.4016 0.4201 0.4631 0.4590 0.4622

STH 0.6992 0.7688 0.8016 0.8098 0.8037 0.6955 0.7239 0.7576 0.7486 0.7240

AGH 0.4257 0.4976 0.5457 0.5698 0.5799 0.6552 0.7046 0.7313 0.7189 0.7043

VDSH 0.7285 0.7718 0.8165 0.7720 0.6630 0.6642 0.7118 0.7335 0.7083 0.7079

BCTH 0.7339 0.7989 0.8389 0.8641 0.8690 0.6827 0.7307 0.7584 0.7669 0.7889

Methods
20Newsgroups TMC

8bits 16bits 32bits 64bits 128bits 8bits 16bits 32bits 64bits 128bits
LSH 0.0578 0.0597 0.0666 0.0770 0.0949 0.4388 0.4393 0.4514 0.4553 0.4773

SH 0.0699 0.1096 0.2010 0.2732 0.2632 0.5999 0.6206 0.6108 0.5813 0.5612

STH 0.2035 0.3481 0.4581 0.5129 0.5247 0.7278 0.7520 0.7633 0.7569 0.7411

AGH 0.2435 0.3531 0.3861 0.3796 0.3579 0.6000 0.6334 0.6443 0.6423 0.6273

VDSH 0.3514 0.3848 0.4667 0.2219 0.0651 0.6503 0.6640 0.7062 0.6567 0.5868

BCTH 0.3089 0.4497 0.5216 0.5534 0.5830 0.7076 0.7351 0.7651 0.7804 0.7926

Methods 8bits 16bits 32bits 64bits 128bits
SH 28.1 28.9 32.2 37.8 47.1

STH 16.3 16.5 17.9 20.3 28.3
AGH 10.3 10.8 11.4 12.8 15.5

VDSH 100+ 100+ 100+ 100+ 100+
BCTH 0.5 0.9 2.0 5.0 10.8

Table 2: Training time (second) of different methods
on 20Newsgroups dataset.

with these methods, BCTH costs less training time
among all different hash bits. The reason can be
attributed to the joint learning of hash codes and
hash function, without needing to build the pair-
wise similarity matrix and the linear time complex-
ity of BTCH. (2) It consumes extremely more time
to train the VDSH model than train a traditional
model. It shows that deep learning methods with so-
phisticated network architecture bring many param-
eters, thus requiring much more time to complete
the training process. (3) The SH, STH, and AGH
spend less time on the training process, which indi-
cates that the traditional methods has its advantage
over the deep learning method in training time.

Apart from comparing the 20Newsgroups
dataset, we also compare over four datasets from
the perspective of precision. Table 1 reports the
comparison results with various methods over dif-
ferent numbers of bits. From this table, we can
derive the following interesting conclusions: (1)
Our proposed BCTH outperforms nearly all base-
lines among all different hash bits on four datasets.

It demonstrates that BCTH, which introduces the
bit-balanced and the bit-uncorrelated constraints,
can learn effectively hash code from documents.
(2) The VDSH model outperforms traditional meth-
ods in almost all situations. It denotes that deep
learning techniques can capture inherent hidden
text semantics, which are beneficial to generate
the text hash codes. Although our method does
not get the best results in some datasets under the
circumstance of short hashing bit, it is approximat-
ing the best ones. Since our method utilizes the
bit-balanced and the bit-uncorrelated constraints to
make each bit capture independent semantics for
documents, it is worthwhile to study the relation-
ship between the length of the hash codes and the
effect of our method.

3.5 Impact of the Length of Hash Codes
Previous works usually limit the length of the hash
code to 128 bits on account of data storage. To
study the effectiveness of the hash codes’ size, we
conduct experiments on hash codes ranging from 8
bits to 128 bits and extend hash codes to 1024 bits
in this section.

Figure 2 reports the compared results on four
datasets. From this figure, we can find the follow-
ing phenomena: (1) when the length of the hash
codes is equal to or over 128 bits, the effect of most
other methods starts to decline. (2) the performance
of our method always increases with the length of
the hash codes increasing over all datasets. The
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Figure 2: Precision@100 curve on four datasets with hash codes length from 8 to 1024.

reason is that our approach, which introduces the
bit-balanced and the bit-uncorrelated constraints,
can better keep independent semantic for all bits.

3.6 Qualitative Analysis

Figure 3: Visualization of the 1024-dimensional docu-
ment latent semantic vectors by BCTH on the 20News-
group dataset using t-SNE.

To evaluate whether our presented BCTH model
can preserve the original documents’ semantics,
we visualize the documents’ low-dimensional rep-
resentations on the 20Newsgroups dataset in this
section. In particular, the hash codes, obtained by
BCTH, can be regarded as the latent semantic vec-
tors of documents. We use t-SNE10 tool to generate
the scatter plots through 1024-bit hash codes. Fig-
ure 3 shows the results. Different colors represent
different categories based on the ground truth. As
we can see from figure 3, BCTH generates well-
separated clusters with each corresponding to a
true category. It shows that our method can ef-
fectively learn low-dimensional representations for
documents.

3.7 Impact of Parameters
Our method is involved with a critical parameter �,
which is used to control the bit-balanced and the bit-

10https://lvdmaaten.github.io/tsne/

Datasets � = 0 � = 0.001 � = 0.01 � = 0.1
RCV1 0.8476 0.8641 0.8526 0.8269
Reuters 0.7577 0.7669 0.7668 0.7532
20Newsgroups 0.5528 0.5534 0.5464 0.5502
TMC 0.7073 0.7172 0.7070 0.7025

Table 3: The effect of � on four datasets with 64 hash-
ing bits.

uncorrelated constraints. We here study the impact
of hyper-parameter � in this section. Table 3 shows
the results, which are obtained by using 64 hash
bits. From this table, we can find that: (1) With
� varying from 0 to 0.1, BCTH is able to achieve
relatively desirable results over all four datasets,
which means that � is universally applicable; (2)
With � set to 0.001, BCTH obtains the optimal
result, and therefore, 0.001 is set as the default
value for our method.

3.8 Convergence Speed
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Figure 4: Convergence curve of the loss on the 20News-
groups.

In order to evaluate the convergence perfor-
mance of our proposed BCTH algorithm, we per-
formed convergence experiments on the 20News-
groups dataset. Considering the different loss
scales produced under different hash bits, we con-
sider the ratio of the loss to the hash length to make
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it comparable at the same scale for different itera-
tions. Note that, in this set of experiments, we also
test one variant of BCTH methods, which is known
as BCTHvariant, which calculates the conditional
probability through Eq. (2). The result is reported
in figure 4, and we can find that: (1) both the BCTH
and the BCTHvariant converge after approximately
10 iterations, and therefore, 10 is set as the default
value for our method; (2) the convergence effect
of BCTH is better than BCTHvariant, which has a
lower loss. This demonstrates that BTCH is effec-
tive.

4 Related Work

Hashing methods can be divided into data-
independent methods and data-dependent meth-
ods (Chang et al., 2012). The well-known data-
independent methods include locality sensitive
hashing (LSH) (Datar et al., 2004) and its vari-
ants. Data-dependent hashing methods are also
known as learning to hash (L2H) methods by learn-
ing a hash function from data (Li et al., 2016). At
present, the main L2H methods (Wang et al., 2018)
can be divided into three categories: pairwise simi-
larity preserving, multiwise similarity preserving,
and implicit similarity preserving. The pairwise
similarity-preserving methods aim to build a pair-
wise similarity matrix between two points, such as
spectral hashing (SH) (Weiss et al., 2008), hash-
ing with graphs (AGH) (Liu et al., 2011), discrete
graph hashing (DGH) (Liu et al., 2014), fast su-
pervised hashing (FastH) (Lin et al., 2014a) and
column-sampling-based discrete supervised hash-
ing (COSDISH) (Kang et al., 2016). The multiwise
similarity-preserving is similar to pairwise similar-
ity, which uses three or more samples as a group
to define generalized similarity measures (Norouzi
et al., 2012; Wang et al., 2013a). The implicit
similarity-preserving methods maintain the simi-
larity in an equivalent manner that adopts the idea
of preserving the similarity of local neighbors (Irie
et al., 2014). Compared with this line of works, al-
though our work also focuses on the nearest neigh-
bor search, our work is different from theirs since
(1) most of these works focus on images data, and
(2) Bayesian Clustering is not covered in these
works.

Another line of works discuss text hashing, is re-
lated to our work since our work also aims to learn
binary code from documents effectively. For exam-
ple, (Zhang et al., 2010) presented the Self-Taught

Hashing (STH) method for efficiently learning se-
mantic hashing. (Zhang et al., 2010) incorporated
both the tag information and the similarity informa-
tion from probabilistic topic modeling. However,
many of these models rely on pairwise similarity-
preserving technique, which the time complexity
is unavoidable O(m

2
) where m is the number of

documents. On the other hand, researchers have
attempted to study text hashing (Xu et al., 2015)
via deep neural networks owing to the success of
deep learning. For example, (Chaidaroon and Fang,
2017) introduces a latent factor for documents to
capture the semantic information. (Kalchbrenner
et al., 2014) proposed an end-to-end Neural Archi-
tecture for Semantic Hashing (NASH), which treats
the hashing codes as latent variables. Compared to
this line of works, our work shares several common
features: (1) our work also learns hashing by in-
troducing latent factor, and (2) our work also aims
to the issues related to text hashing. Nevertheless,
our work differs from theirs in several features: (1)
most of these works are based on complex nonlin-
ear functions like convolutional neural networks,
and training time complexity is enormous, and (2)
Bayesian Clustering is not covered in these works.
In this paper, we make the first attempts to utilize
Bayesian Clustering for text hashing and gain train-
ing time’s linear complexity.

5 Conclusion

This paper presents a general learning framework
that utilizes multiple Bayesian Clusterings jointly
for text hashing. We introduce two constraints to
make the hash code effectively. Specifically, the
bit-balanced constraint is employed to maximize
the amount of information in each bit, and the bit-
uncorrelated constraint is adopted to keep the in-
dependence among all bits. The time complexity
of our method is linear. Based on four widely-
used datasets, the experiment results demonstrate
that BCTH is competitive compared with current
competitive baselines from the perspective of both
precision and training speed.
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