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Abstract
In this paper we investigate the problem of adapting a machine translation system to the feed-
back provided by multiple post-editors. It is well know that translators might have very dif-
ferent post-editing styles and that this variability hinders the application of online learning
methods, which indeed assume a homogeneous source of adaptation data. We hence propose
multi-task learning to leverage bias information from each single post-editors in order to con-
strain the evolution of the SMT system. A new framework for significance testing with sentence
level metrics is described which shows that Multi-Task learning approaches outperforms exist-
ing online learning approaches, with significant gains of 1.24 and 1.88 TER score over a strong
online adaptive baseline, on a test set of post-edits produced by four translators texts and on a
popular benchmark with multiple references, respectively.

1 Introduction

In a professional localization environment, a document is post-edited by several professional
translators with assistance of tools such as translation memory, dictionary, spell checkers etc.
To speed up the process, lately localization companies have started using computer assisted
translation (CAT) tools with statistical machine translation (SMT) systems in the backend. The
role played by the SMT engine is to provide a translation hypothesis that the translator can post
edit to produce high quality translations (Federico et al., 2012).

In recent works on online adaptation by Mathur et al. (2013) and Denkowski et al. (2014),
the SMT is fed with the post edited sentence, allowing the models to adapt to the corrections
made by the translators. These kind of systems works well if the document is being post edited
by a single translator because models can adapt to the style of that translator. Problems arise
when a document is being post edited by a group of translators which is usually the case with big
size documents. In fact, if the SMT system adapts to the corrections of all translators together,
it will likely mix or overlap stylistic features of the post-editors and thus not learn to mimic well
any of them. On the other side, if the system adapts to each individual post-editor, then clearly
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useful feedback from other post-editors gets wasted.
The main motivation for adapting a SMT system in the backend of CAT tool is that the

translation improves over time since fewer mistakes are made after learning from post editions.
For example, translator A does not post edit phrase Fibre Channel because he thinks that the
phrase is a named entity, while B post edits Fibre Channel→ Canale a fibre because he does
not recognize it as a named entity. In the backend the SMT system first updates the model
such that it keeps the named entity intact but after second post-edition the system adapt the
model to translate Fibre Channel→ Canale a fibre. Now, if the system receives again the input
Fibre Channel, it will prefer to output Canale a fibre which will be an incorrect suggestion for
translator A. This repetition of translation error slows down the process of post-editing which
is completely opposite to the idea of using SMT system in the background.

In this paper, we aim at building a SMT system which can solve this dilemma of contrasting
updates. A localization company would expect the SMT system to incorporate these updates
and improve the translation quality with time. To do so, we propose using multi-task learning
(henceforth MTL) (Caruana, 1993) in machine translation systems. Here, we can consider the
translators as different tasks and their post edits as an incoming stream of data the system wants
to adapt to. Moreover, this system also maintains a prior relationship between the translators,
according to the framework specified in multi-task learning.

The paper is structured as follows. First, we describe previous work on using online learn-
ing algorithm in CAT scenario and the generic online multi-task learning algorithm developed
by Cavallanti et al. (2010). Then, Section 4 describes the online multi-task learning algorithm
which can be applied in CAT scenario. Experiments and results are shown in Section 5. We
conclude the paper with a preview of interesting related works and few words about the future
work.

2 Background: Online Large Margin Training

Previous work by Mathur et al. (2013) applies an online large margin algorithm (MIRA), that
updates the weights w of a phrase-based SMT model according to the loss that is occurred due
to an incorrect translation. The margin is coupled with the following loss function based on the
complement of the sentence level BLEU (BLEU+1, henceforth sBLEU) (Lin and Och, 2004;
Nakov et al., 2012):

lj = sBLEU(y∗)− sBLEU(yj) (1)

where y∗ is the oracle (closest translation to the reference) and yj is the j-th candidate being
processed inside an N -best list. According to (Watanabe et al., 2007), weights are updated so
that the loss is not larger than the difference between the scores given by the model:

lj ≤ wT∆hj (2)

where ∆hj is the difference between the feature vectors of the oracle and the candidate, and w
is the weight vector. Hence, the size of the weight update is:

arg min
w
||w − w′||+ C

∑
j

ξj

subject to

wT∆hj + ξj ≥ lj
ξj ≥ 0 ∀j ∈ {1 . . . N} (3)
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C is an aggressiveness parameter which controls the size of the update and ξ are slack variables.
Following (Watanabe et al., 2007), the Lagrangian dual form of criterion (3) can be derived:

max
α(·)≥0

−1

2
||
∑
j

αj ·∆hj ||2 +
∑
j

αj lj −
∑
j

αjw
′T∆hj

subject to
∑
j

αj ≤ C (4)

which leads to a quadratic programming problem and to the weight vector update:

w = w′ +
∑
j

αj ·∆hj . (5)

We determine the lagrangian multipliers αj at each iteration by applying a QP-solver based on
gradient descent.

3 Online Multi-Task Learning

In online multi-task learning (henceforth OMTL) (Cavallanti et al., 2010), training is done
jointly on k tasks so as to improve generalization capability for all tasks. Here, the task can
be either binary classification or linear regression. The overall goal of OMTL is to learn the k
weight vectors simultaneously, one for each task in an online fashion.
The protocol for OMTL at each time t is as follows:

1. receive an input pair (x, s), where x is the example and s is the task id

2. predict the value ŷ = wTs hs(x), using current weights ws for task s

3. receive the correct label y

4. update all the k weight vectors ws with s = 1, . . . , k

OMTL is a matrix-based regularization approach described in details in Cavallanti et al.
(2010). The update step in online learning is the standard Perceptron rule (Rosenblatt, 1958)
with different learning rates for each task. These learning rates are defined in an interaction
matrix which encodes the relatedness among the different tasks. The as1,s2 element of the
interaction matrix is the learning rate for task s1 when task s2 is being executed.

A−1 =
1

k + 1


a11 a12 · · · a1k
a21 a22 · · · a2k
· · · · · · · · · · · ·
ak1 ak2 · · · akk

 (6)

with update rule for weight vector ws equal to:

ws = w′s + ŷ(A⊗ Id)−1s Hs(x) (7)

where ⊗ denotes the Kronecker product1 of the interaction matrix (A−1) of dimension k × k
and identity matrix (Id) of dimensions d× d, making a kd× kd matrix. The kd× kd matrix in
the update rule co-regularizes the weight vector (ws) by forcing the learner to account for the
relatedness between the tasks. Hs(x) = ( 0, . . . , 0︸ ︷︷ ︸

(s−1)d times

, hs(x), 0, . . . , 0︸ ︷︷ ︸
(k−s)d times

) ∈ Rkd with d being

the number of features.
1⊗ shows mixed-product property, so one can calculate A−1 and then compute the Kronecker product of

A−1 ⊗ I−1
d .
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4 MIRA with multitasking

MIRA has been successfully applied to tune the log linear weights of SMT model in post editing
scenario by Mathur et al. (2013). Here, we extend the online algorithm to fit the same scenario
where input comes from k different translators (tasks2) and the learner has to predict the weights
of all tasks simultaneously.

We modify Equation 5 by adding the matrix co-regularization factor of (A⊗ Id)−1 (from
Equation 7), such that the difference of feature vector from jth candidate translation (i.e. ∆hj)
affecting the change in weights for current task s take into account the bias from each task.
After substitution, our update rule becomes:

ws = w′s +
∑
j

αj · 〈∆hs,j〉 where

〈∆hs,j〉 = (A⊗ Id)−1 ·∆Hs,j and

∆Hs,j = ( 0, . . . , 0︸ ︷︷ ︸
(s−1)d times

,∆hs,j , 0, . . . , 0︸ ︷︷ ︸
(k−s)d times

) (8)

Here, ∆Hs,j is a compound row vector for candidate translation j of size kd with d being
the size of the standard log linear features used in SMT3. (A ⊗ Id)−1s is the co-regularization
factor of kd × kd dimensions. A−1 as seen from Equation 6 defines the task relatedness. In
CAT scenario we can see the interaction matrix as the matrix which defines relatedness between
different translators. This relatedness can be captured by finding a correlation between the
translators on their previous post-editions of a given dataset. The similar their post-editions on
a particular dataset (with that the machine translation suggestion coming from one SMT system)
the more is the relatedness between the translator. In Section 5.2, we show a way to compute
the interaction matrix.

5 Experiments and Results

5.1 Data
We evaluated our method on three translation tasks defined over three different domains, namely
Information Technology (IT), Travel domain (BTEC) and Legal domain.

The IT test set involves the translation of technical documents from English into Italian
and has been used in the field test carried out under the MateCat4 project. It has been translated
by four translators, i.e. four different translations of the source document are available.

BTEC is a publicly available corpus in the travel domain, proposed as translation task in
the IWSLT evaluation campaigns up to 2010. In addition to its availability, BTEC is of interest
for us because the test set contains six human references, allowing to simulate the multi-task
scenario.

Legal domain data has been release as a part of JRC-acquis corpus (Steinberger et al.,
2006). The dataset contains translation of legal documents from English to Italian. This dataset
was also a part of the field test carried out under the same MateCat project, so essentially we
have post-edited data from 4 different translators on a test set of 90 sentences.

Since our methods regard the adaptation of MT models, the potential impact strictly de-
pends on how much the considered text is repetitive. For measuring that text feature, we use the
repetition rate proposed by Bertoldi et al. (2013). Equation 9 shows the formula for calculat-
ing the repetition rate of a document, where dict(n) represents the total number of different

2In this paper we use the terms tasks and translators interchangeably as the tasks are translators in the CAT scenario.
3To keep the notation light we again drop the dependency of h from x.
4http://www.matecat.com
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n-grams and nr is the number of different n-grams occurring exactly r times. Statistics of the
parallel sets on source and target sides along with the repetition rates are reported in Table 1.

RR =

(
4∏

n=1

∑
S dict(n)− n1∑

S dict(n)

)1/4

(9)

Domain Set #srcTok SrcRR #tgtTok TgtRR

ITen→it

Train 57M na 60M na
Dev 3.3K 19.08 3.6K 18.01
Test 3K 31.32 3.3K 22.18

BTECen→it

Train 0.14M na 0.13M na
Dev 2K 9.47 1.9K 6.73
Test 1.9K 12.5 1.8K 7.76

Legalen→it

Train 63M na 65M na
Dev 2.9K 14.37 3.2K 11.25
Test 2.7K 13.59 2.85K 12.00

Table 1: Statistics of parallel data.

Preparing Data for MTL Since we have k translations for a source document, we shuffle the
references/post-editions such that we have one source document and one target document with
the sentences containing meta information for the translators who produced these translations.
Table 2 shows a sample of source and target document from IT dataset. The figure reads:
sentence #1 is translated by translator #0, then feedback (sentence #2) goes to the system with
its post-edited translation, system performs multi-task learning and so on. If one removes the
meta-information about the translator’s ID, the resulting development set is used for online
learning (refer Section 2). If one also removes the feedback, then the development set is used
for baseline system (refer Section 5.2).

This shuffling of data also impacts the repetition rate. In fact, the repetition rates on the
target side of IT test set for each translator varied from 26.95 to 28.70, while the repetition
rate on the shuffled target side is 22.18, as reported in Table 1; this could be due to the fact
that translators tend to be not consistent among themselves, yielding less repetitions in each
post-edited test set than in the shuffled test set.

#Sentence Sentence OnlineLearning Translator ID
1 Input Date # 0 Not Activated 0
2 Input Date # Data di input # 0 Activated 0
3 Evaluates conditionally # 1 Not Activated 1
4 Evaluates conditionally # Valuta in modo condizionale # 1 Activated 1

Table 2: Excerpt from IT development set tagged with meta data.

5.2 Experiments
The SMT systems were built using the Moses toolkit (Koehn et al., 2007). Domain specific
training data was used to create translation and lexical reordering models. 5-gram language
models for each task were estimated by means of IRSTLM toolkit (Federico et al., 2008), with
improved Kneser-Ney smoothing (Chen and Goodman, 1998), on the target side of the training
parallel corpora. After the training of MT models, the log linear weights were optimized using
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MERT (Och, 2003) implementation provided in the Moses toolkit. Performance is computed
not with corpus level metrics but with sentence level metrics. We decided to do this to avoid a
metric mismatch between the evaluation and actual optimization where the margin is calculated
by the sentence level BLEU scores (refer to Section 2). Therefore, we computed sBLEU scores
and sentence level TER (Snover et al., 2006) scores and reported their average over the whole
documents. We call them avg-sBLEU and avg-sTER.

Calculating A−1 matrix: Interaction matrix can be computed in different ways. It basically
conveys the relatedness/correlation between the translators who are post-editing a particular
document. Usually a localization company keeps a ranking of the hired translators with them;
either we can use the ranking to exploit the relatedness between the translators or we can cal-
culate their correlation based on a known previous post-edited data set. Here, we assume that
the relatedness between the translators can be seen as the similarity between their post-edited
segments given that the MT suggestions were from the same system for all translators. This
assumption is quite intuitive.

To compute the similarity, we calculate sentence level TER scores between the MT sug-
gestions and the post-edited segments. In the cases where we do not have post-edited MT
suggestions, for example BTEC where only multiple references are available, we simulate the
conditions of post-editing by using the SMT translations provided by our own baseline sys-
tem as MT suggestions. Now, the relatedness can be seen as the correlation between the sen-
tence wise TER scores. We compute the correlation using a widely accepted correlation metric,
namely the Pearson correlation coefficient (henceforth r).

Once it is calculated, we rescale these coefficients so that the values are between [0,1],
instead of [-1,1] as given by r. We do this rescaling of correlations because matrix-based reg-
ularization is not able to handle the negative relatedness between the tasks. These values are
computed on the corresponding development sets (which also contain post-edited segments
from same translators) and are used to construct the A−1 matrix. Since the r is bi-directional,
the interaction matrix is symmetric in nature. r values between the translators for IT and BTEC
datasets are shown in Tables 3 and 4 respectively.

Translators T1 T2 T3 T4
T1 1 0.82 0.83 0.70
T2 0.82 1 0.86 0.79
T3 0.83 0.86 1 0.77
T4 0.70 0.79 0.77 1

Table 3: Pearson correlation amongst transla-
tors on IT dataset.

Translators T1 T2 T3 T4 T5 T6
T1 1 0.69 0.68 0.92 0.96 0.97
T2 0.69 1 0.57 0.64 0.64 0.66
T3 0.68 0.57 1 0.71 0.66 0.67
T4 0.92 0.64 0.71 1 0.90 0.91
T5 0.96 0.64 0.66 0.90 1 0.98
T6 0.97 0.66 0.67 0.91 0.98 1

Table 4: Pearson correlation amongst translators on BTEC
dataset. These correlations are computed on a simulated envi-
ronment.

Now, we give a brief description of the various SMT systems involved in the experiments:

Baseline: SMT models are trained on the domain specific training data; log linear weights are
tuned on shuffled development set without any feedback and meta data about translator’s ID.

Online: Feedback is added to the development set without the translator’s ID. First, log linear
weights are tuned on this development data by means of MERT; then, keeping them fixed to
the optimal values, additional hyper parameters (used in Online system) are tuned again on the
development set by means of the Simplex algorithm (Nelder and Mead, 1965). This system
contains a single weight vector for all the translators and is the same as explained in (Mathur
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et al., 2013).

MTL-pearson: Meta-information is added to the development set, and log linear weights are
tuned on the dev set. There is an additional bias feature while using multi-task learning which is
tuned using Simplex algorithm on the dev set. The elements of interaction matrix are the scaled
rs. This system keeps track of k different weight vectors for each translator.

MTL-halfupdate: The diagonal elements of the interaction matrix are set to 1, the off-
diagonal elements to 0.5. This means that for every update in the current task j ∈ 1 . . . k
we do a half-update to rest of the tasks. Note that this system does not need a development set
to calculate the interaction matrix unlike MTL-pearson.

K-independent: The interaction matrix is set to be the identity matrix; it means that the tasks
are independent of each other because no correlation is assumed between the translators. This
system differs from Online system because here there is a separate instance of online learning
for every translator, while in Online system there is a single instance of online learning for all
the translators.

5.3 Results
Table 5 shows the avg-sTER5 and avg-sBLEU scores over whole test set for all the systems. On
the IT test set MTL-pearson shows gain of 1 avg-sBLEU points and 3.3 avg-sTER points over
the Baseline system and 1.24 avg-sTER points over the strong Online system.

However, MTL-pearson does not perform well on BTEC test set, that is we are not able
to capture well the task-relatedness in this scenario. Since the actual post-edit translations
for BTEC are not available, we simulated them by generating MT suggestions from baseline
system, which likely affects the effectiveness of the method. Nevertheless, MTL-halfupdate
being a default system is able to capture quite well the correlation between the translators and
significantly outperforms all the other systems. We can then conclude that if one does not have
access to prior information about the translators for calculating the relatedness amongst them it
is a good idea to back-off to use the default half-updates option.

On the Legal domain test set Multi-Task learning is not able to significantly improve over
the online learning system. One reason for this could be the total number of sentences in the test
set (90), that is each post-editor post edits only 22-25 sentences which is quite less in number
as compared to other dataset where total number of sentences are 176 (IT) and 250 (BTEC) and
hence each post-editor edits 44 and 42 sentences respectively. The other reason could be the
relatively low repetition rate observed on the Legal test set.

System IT BTEC Legal
avg-sTER avg-sBLEU avg-sTER avg-sBLEU avg-sTER avg-sBLEU

Baseline 46.91 38.28 42.76 46.69 39.44 41.09
Online 44.86 39.21 42.64 46.72 38.96 41.56

MTL-pearson 43.62 39.27 41.76 47.17 38.93 41.58
MTL-halfupdate 44.63 38.94 40.76 47.71 38.93 41.58
K-independent 46.55 38.04 42.25 47.05 38.93 41.55

Table 5: BLEU scores achieved by using different techniques of online learning. Best BLEU and TER scores are
marked in bold fonts.

Significance Testing: Here, we employ a non-parametric multiple hypothesis testing
framework such as Friedman tests. The strategy for significance testing is as follows:

5It has been shown in the past by Snover et al. (2006) that in post-edit scenario TER has higher correlation than
BLEU against the post-editing effort, and so we fix our primary metric to be avg-sTER.
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1. We mark epochs at every 10% of test set i.e. t epochs at 10%, 20% .. 100%.

2. At every epoch we measure the average performance of the system in question i.e. calcu-
late avg-sTER.

3. In the end we have avg-sTER scores of five different systems at t different epochs.

4. The average performance of the aforementioned methods on the epochs can be seen as
multiple systems trying to solve multiple problems. To calculate the p-values of these
multiple systems, we use Friedman test (Friedman, 1937).

5. Once p-values are calculated, we use a post-hoc Holm’s procedure (Holm, 1979) to check
for the significance.

Results are reported in Table 6.

P-Value
Algorithm IT BTEC Legal

MTL-pearson vs. Online 0.022� 0.028� 0.066�

MTL-halfupdate vs. Online 0.003� 0.000� 0.066�

K-Independent vs. Online 0.311 0.479 0.160
MTL-pearson vs. K-Independent 0.200 0.137 0.670

MTL-halfupdate vs. K-Independent 0.050 0.000� 0.670
MTL-pearson vs. MTL-halfupdate 0.500 0.007� 1.000

Table 6: p-values given by Friedman test. � depicts a significant difference between the systems
that are being compared.

We plotted the incremental avg-sTER scores over t different epochs on all test sets in
Figure 1.

First of all, it is worth to compare the plots of MTL-pearson and of Online systems on IT
test set, for which the improvement of over 3 avg-sTER points reported in Table 5 is significant
(Table 6). In fact, the gap between the MTL-pearson system and the Online system is visible in
the plot only after the 6th epoch, that is for 6 out of 10 epochs differences are not big enough;
nevertheless; the difference is significant. MTL-halfupdate performs better than any other sys-
tem at least on 6 out of 10 epochs, but even on all epochs with respect to the Online system: this
is why it outperforms the Online at 95% of confidence interval. Interesting to note that MTL-
halfupdate is the best performing system till 6 epochs; after that, MTL-pearson becomes the best
one: this basically says that for the starting 60% of the data the translators had a correlation
of half with each other, while later they were as coherent as they were when they post-edited
the development set (because MTL-pearson correlation is calculated on development set). This
also means that the relatedness between the translators is evolving even while post-editing the
same dataset.

On BTEC test set, MTL-halfupdate consistently outperforms all other SMT systems on
each epoch; this explains why it is significantly better than all other systems. On 9 epochs
out of 10, MTL-pearson is better than the Online system; hence, the difference is significant.
Results on BTEC put in evidence the importance of estimating a reliable interaction matrix to
allow multi-task learning working at its best, but also that half-update is an effective back-off
solution.

Significance tests on Legal test set6 shows that MTL-* systems are better than the Online
6The error curve in Legal domain shows an apparently surprising increasing trend. This is due to the nature of the

test set where the starting sentences are easier to translate than the later ones.
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system with a p-value of 0.066.
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Figure 1: Learning curve of different systems on IT (top left), BTEC (top right) and Legal
(bottom) test sets.

So far, the evaluations were done on a shuffle of test set where the translators were assigned
in sequence, i.e. first sentence to first translator, second to second and so on. This is usually not
the case in a real world scenario, because a sentence can be assigned to any of the translators and
not necessarily in a sequence. To replicate such scenario, we developed an assigning scheme
through which each translator is assigned equal number of segments from a document to post-
edit. The scheme is as follows:

1. For n translators, all possible permutations of the series 1...n is computed (total of n!).

2. The document to be post edited is divided in blocks of n sentences.

3. For each block we randomly pick a permutation series among the n! choices, and assign it
to the block in question.

Following this scheme, we created 100 different shuffles of the IT test set which are closer to
the real life setting. Similar to the learning curve we built before, we averaged out avg-sTER
scores over 100 shuffles on sequential epochs i.e. (10%, 20%...100% of data). Figure 2 reports
the learning curves of different adaptive systems over epochal data.

Here, unlike in the previous case, for each of 176 sentences we have 100 different sentence
wise TER scores using 5 different systems. Since just the IT domain is considered, data are
more homogeneous and then we could apply Approximate Randomization (Noreen, 1989), a
statistical test that is well established in the NLP community (Chinchor et al., 1993). The test
has been shown (Riezler and Maxwell, 2005) to be less prone to type-I errors than the boostrap
method (Efron and Tibshirani, 1993). We report the significance results in Table 7.

Even after the shuffling, we see that MTL-pearson system resistant to the shuffles and still
performs significantly better than any other system. However, we observe a contradictory infor-
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Figure 2: Learning curves of different systems on shuffled IT test set.

Systems Compared P-Value
Baseline vs. Online 0.001

Baseline vs. MTL-pearson 0.001
MTL-pearson vs. K-Independent 0.001

MTL-HalfUpdate vs. Online 0.04
MTL-pearson vs. MTL-HalfUpdate 0.001

Online vs. MTL-pearson 0.007

Table 7: p-values given by Approximate Randomization test. All the reported results in the
table are significant.

mation from the previous results; MTL-HalfUpdate system performs significantly worse than
Online system over 100 shuffles, which means that quality of translation from MTL-HalfUpdate
system can degrade if the translators are randomly assigned and not sequential as in the previous
case. The same behaviour is observed in K-independent system where the system’s performance
is significantly worse than the Baseline system. All the other results remain consistent to what
we observed in the previous case.

Table 8 shows an excerpt from the IT test set. The phrase backup in the source sentence
(#21) is translated to copia di riserva by both K-Independent and MTL-pearson systems but
the translator post-edits the phrase in both translation hypotheses to backup. Later, in sentence
#23 the phrase appears again and this time Multi-Task correctly outputs the translation of the
phrase backup to backup but K-independent system is not able to correct the mistake. Reiterat-
ing, K-Independent system runs a single instance of online learning for each of the post-editors.
In the example the first sentence is post-edited by translator #3 and the latter by translator#1,
thus, the system is not able to recognize the mistake committed for the translator #1 and conse-
quently cannot correct it for translator #3. While the system MTL-pearson learns jointly over
the corrections by all the translators and thus able to correct the translation hypothesis the next
time.

Overall, the results show that Multi-Task learning outperforms the existing standard SMT
and the strong online learning systems. If we have the meta information on the post-editors
apriori i.e. their mutual correlation, we can boost the performance of the adaptive system. One
can use the MTL-pearson system if the correlation matrix can be calculated accurately; if not,
it is preferable to back-off to MTL-halfupdate system.
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Source - 21 with minimal copying of data from the production volume to backup volume . # 3
K-Ind - 21 con un minimo la copia di dati dal volume di produzione per il volume della copia di riserva .
Multi-Task - 21 con un minimo la copia di dati dal volume di produzione per il volume della copia di riserva .
Post-Edit - 21 con una copia minima dei dati dal volume di produzione nel volume di backup .
Source - 23 you create a backup and after it completes # 1
K-Ind - 23 possibile creare una copia di riserva e dopo il completamento
Multi-Task - 23 creare un backup e dopo il completamento
Post-Edit - 23 possibile creare un backup e , al suo completamento

Table 8: Example from the IT test set. Here Multi-Task refers to MTL-pearson system and
K-ind is K-independent system.

6 Related Works

Despite several online adaptation strategies have been proposed in the past, only a few deal with
adaptation of post-edited/evaluation data while most works are on adaptation over development
data during tuning of parameters (Och and Ney, 2003).

Cesa-Bianchi et al. (2008) proposed an online learning approach during decoding. They
construct a layer of online weights over the regular feature weights and update these weights
at sentence level using margin infused relaxed algorithm (Crammer and Singer, 2003); to our
knowledge, this is the first work on online adaptation during decoding. Martı́nez-Gómez et al.
(2011, 2012) presented a comparison of online adaptation techniques in post editing scenario.
They compared different adaptation strategies on feature weights and features itself.

Multi-Task learning has been explored in SMT in the context of tuning the sparse log
linear weights by Simianer et al. (2012) where they split the training set in random shards and
perform a joint feature selection over these shards using `1/`2 regularization. In this way after
each epoch, the size of feature vector decreases and only the important features are taken into
account. In our paper instead of `1/`2 regularization we have use a matrix-based regularization
approach on the core features for online adaptation of all the translation models.

Multi-Task learning has also been used in re-ranking the N-best list by Duh et al. (2010).
Each N-Best list is considered as a different task and the weights are jointly learnt over a large
set of sparse features. Simianer et al. (2011) trained a discriminative model using multi-task
learning over a set of k documents belonging to different topics but with strong commonalities.

Recent application of multi-task learning has been in quality estimation for machine trans-
lation by Cohn and Specia (2013) where the authors model annotator bias using multi-task
Gaussian processes. Their model outperforms the annotator specific model and thus boosting
the use of Multi-Task learning in NLP applications. Another application of MTL has been in
supervised domain adaptation for quality estimation (C. de Souza et al., 2014). In this work the
authors leverage all available training labels from different domains in order to learn a robust
model for a target domain with very little labeled data. The approach proposed outperforms
independent models trained separetely on each domain.

7 Conclusion

We addressed the problem of adapting in a CAT framework a single SMT system to multiple
post-editions, i.e. to an incoming stream of feedback from different translators. In such a
situation, standard online learning methods can lead to incoherent translations by the SMT
system. To the best of our knowledge, this kind of problem has never been addressed before
for adapting SMT systems in CAT scenario. As a solution we propose to adopt a multi-task
learning scheme, which relies on the correlation amongst the translators computed using prior
knowledge; the online learner is then constrained to take into account the relatedness amongst
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the translators.
Different online systems have been compared against each other, and online multi-task

learning SMT system outperformed in most cases the strong online learning SMT system taken
as baseline. Whenever not enough information about the correlation amongst the translators
is available, our experimental outcomes suggest to use multi-task learning with half-updates,
which is a good generalization of the interaction between the translators. We also compared
the Multi-Task approach to the K-Independent system where each translator has been alloted an
online learning SMT system; evidently, multi-task also fared better against this system setup.
Moreover, MTL can also be applied to tune the log-linear weights of SMT models when multi-
ple references are given.

In our approach, once the correlation matrix has been computed, it is kept fixed throughout
the learning process. Instead, as evinced by our experiments, the interaction between translators
can evolve over time; we plan to further investigate this aspect in the future.
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Martı́nez-Gómez, P., Sanchis-Trilles, G., and Casacuberta, F. (2012). Online adaptation
strategies for statistical machine translation in post-editing scenarios. Pattern Recogn.,
45(9):3193–3203.

Mathur, P., Cettolo, M., and Federico, M. (2013). Online Learning Approaches in Computer
Assisted Translation. In Proceedings of the Eighth Workshop on Statistical Machine Trans-
lation, pages 301–308, Sofia, Bulgaria. Association for Computational Linguistics.

Nakov, P., Guzmán, F., and Vogel, S. (2012). Optimizing for sentence-level bleu+1 yields short
translations. In COLING, pages 1979–1994.

Nelder, J. A. and Mead, R. (1965). A simplex method for function minimization. The Computer
Journal, 7(4):308–313.

Al-Onaizan & Simard (Eds.) Proceedings of AMTA 2014, vol. 1:  MT Researchers      Vancouver, BC       © The Authors 164



Noreen, E. W. (1989). Computer Intensive Methods for Testing Hypotheses: An Introduction.
Wiley Interscience.

Och, F. and Ney, H. (2003). A systematic comparison of various statistical alignment models.
Computational Linguistics, 29(1):19–51.

Och, F. J. (2003). Minimum Error Rate Training in Statistical Machine Translation. In Hinrichs,
E. and Roth, D., editors, Proceedings of the 41st Annual Meeting of the Association for
Computational Linguistics, pages 160–167.

Riezler, S. and Maxwell, J. T. (2005). On some pitfalls in automatic evaluation and significance
testing for MT. In Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation
Measures for Machine Translation and/or Summarization, pages 57–64, Ann Arbor, Michi-
gan. Association for Computational Linguistics.

Rosenblatt, F. (1958). The Perceptron: A probabilistic model for information storage and orga-
nization in the brain. Psychological Review, 65:386–408.

Simianer, P., Riezler, S., and Dyer, C. (2012). Joint feature selection in distributed stochastic
learning for large-scale discriminative training in SMT. In Proceedings of the 50th Annual
Meeting of the Association for Computational Linguistics (ACL’12).

Simianer, P., Wschle, K., and Riezler, S. (2011). Multi-task minimum error rate training for
smt. Prague Bull. Math. Linguistics, 96:99–108.

Snover, M., Dorr, B., Schwartz, R., Micciulla, L., and Makhoul, J. (2006). A study of translation
edit rate with targeted human annotation. In 5th Conference of the Association for Machine
Translation in the Americas (AMTA), Boston, Massachusetts.

Steinberger, R., Pouliquen, B., Widiger, A., Ignat, C., Erjavec, T., Tufiş, D., and Varga, D.
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