
Proceedings of the 8th SIGdial Workshop on Discourse and Dialogue, pages 265–272,
Antwerp, September 2007.c©2007 Association for Computational Linguistics

Planning Dialog Actions

Mark Steedman
School of Informatics

University of Edinburgh
Edinburgh EH8 9LW, Scotland, UK
steedman@inf.ed.ac.uk

Ronald P. A. Petrick
School of Informatics

University of Edinburgh
Edinburgh EH8 9LW, Scotland, UK
rpetrick@inf.ed.ac.uk

Abstract

The problem of planning dialog moves can
be viewed as an instance of the more gen-
eral AI problem of planning with incomplete
information and sensing. Sensing actions
complicate the planning process since such
actions engender potentially infinite state
spaces. We adapt the Linear Dynamic Event
Calculus (LDEC) to the representation of di-
alog acts using insights from the PKS plan-
ner, and show how this formalism can be
applied to the problem of planning mixed-
initiative collaborative discourse.

1 Introduction

Successful planning in dynamic domains often re-
quires reasoning about sensing acts which, when ex-
ecuted, update the planner’s knowledge state with-
out necessarily changing the world state. For in-
stance, reading a piece of paper with a telephone
number printed on it may provide the reader with
the prerequisite information needed to successfully
complete a phone call. Such actions typically have
very large, even infinite, sets of possible outcomes
in terms of the actual sensed value, and threaten to
make search impracticable. There have been sev-
eral suggestions in the AI literature for how to han-
dle this problem, including Moore (1985); Morgen-
stern (1988); Etzioni et al. (1992); Stone (1998); and
Petrick & Bacchus (2002; 2004).

Stone (2000) points out that the problem of
planning effective conversational moves is also a
problem of planning with sensing or knowledge-
producing actions, a view that is also implicit in

early “beliefs, desires and intentions” (BDI) -based
approaches (e.g., Litman & Allen (1987); Bratman,
Israel & Pollack (1988); Cohen & Levesque (1990);
Grosz & Sidner (1990)). Nevertheless, most work
on dialog planning has in practice tended to segre-
gate domain planning and discourse planning, treat-
ing the former as an AI black box, and capturing the
latter in large state-transition machines mediated or
controlled via a blackboard or “information state”
representing mutual belief, updated by specialized
rules more or less directly embodying some form of
speech-act theory, dialog game, or theory of textual
coherence (e.g., Lambert & Carberry (1991); Traum
& Allen (1992); Green & Carberry (1994); Young
& Moore (1994); Chu-Carroll & Carberry (1995);
Matheson, Poesio & Traum (2000); Beun (2001));
Asher & Lascarides (2003); Maudet (2004)). Such
accounts often lend themselves to optimization us-
ing statistical models (e.g., Singh et al. (2002)).

One of the ostensible reasons for making this sep-
aration is that indirect speech acts, i.e., achieving
coherence via implicatures, abound in conversation.
(For instance, Green and Carberry cite studies show-
ing around 13% of answers to Yes/No questions are
indirect.) Nevertheless, that very same ubiquity of
the phenomenon suggests it is a manifestation of the
same planning apparatus as the domain planner, and
that it should not be necessary to construct a com-
pletely separate specialized planner for dialog acts.

This paper addresses the problem of dialog plan-
ning by applying techniques developed in the AI
planning literature for handling sensing and incom-
plete information. To this end, we work with plan-
ning domains axiomatized in the language of the

265

Linear Dynamic Event Calculus (LDEC), but ex-
tended with constructs inspired by the knowledge-
level conditional planner PKS.

2 Linear Dynamic Event Calculus (LDEC)

The Linear Dynamic Event Calculus (LDEC)
(Steedman, 1997; Steedman, 2002) is a logical for-
malism that combines the insights of the Event
Calculus of Kowalski & Sergot (1986), itself a
descendant of the Situation Calculus (McCarthy
and Hayes, 1969), and the STRIPS planner of
Fikes & Nilsson (1971), together with the Dynamic
and Linear Logics developed by Girard (1987),
Harel (1984), and others.

The particular dynamic logic that we work with
here exclusively uses the deterministic “necessity”
modality [α]. For instance, if a program α computes
a function f over the integers, then an expression
like “n ≥ 0 ⇒ [α](y = f (n))” indicates that “in
any situation in which n ≥ 0, after every execution
of α that terminates, y = f (n).” We can think of
this modality as defining a logic whose models are
Kripke diagrams, where accessibility between situ-
ations is represented by events defined in terms of
the conditions which must hold before an event can
occur (e.g., “n ≥ 0”), and the consequences of the
event that hold as a result (e.g., “y = f (n)”).

Thus, actions (or events) in LDEC provide the
sole means of change and affect the fluents (i.e.,
properties) of the world being modelled. Like other
dynamic logics, LDEC does not use explicit situa-
tion terms to denote the state-dependent values of
fluents, but instead, chains together finite sequences
of actions using a sequence operator “;”. For in-
stance, [α1;α2; . . . ;αn] denotes a sequence of n ac-
tions and [α1;α2; . . . ;αn]φ means that φ must nec-
essarily hold after every execution of this sequence.

One of the novel features of LDEC is that it
mixes two types of logical implication. Besides
standard (or intuitionistic) implication ⇒, LDEC
follows Bibel et al. (1989) and others in using lin-
ear logical implication, denoted by the symbol (.
Linear implication extends LDEC’s representational
power and provides a solution to the frame problem
(McCarthy and Hayes, 1969), as we’ll see below.

An LDEC domain is formally described by a col-
lection of axioms. For each action α, a domain in-

cludes an action precondition axiom of the form:

L1 ∧ L2 ∧ . . . ∧ Lk ⇒ affords(α),

where each Li is a fluent or its negation (we discuss
affords below), and an effect axiom of the form:

{affords(α)} ∧ φ([α]ψ,

where φ and ψ are conjunctions of fluents or their
negations. LDEC domains can also specify a collec-
tion of initial situation axioms of the form:

L1 ∧ L2 ∧ . . . ∧ Lp,

where each Li is a ground fluent literal. Finally,
LDEC domains can include a set of background ax-
ioms (e.g., for defining the properties of other modal
operators), and a set of simple state constraint ax-
ioms (e.g., for encoding inter-fluent relationships).
We will not discuss the details of these axioms here.

Action precondition axioms specify the applica-
bility conditions of actions using a special affords
fluent. Effect axioms use linear implication to build
certain “update rules” directly into the LDEC repre-
sentation. In particular, the fluents of φ in the an-
tecedent of an effect axiom are treated as consum-
able resources that are replaced by the fluents of
ψ in the consequent when an action α is applied.1

{affords(α)} means that it is not defined whether
affords(α) still holds after α. All other fluents are
unchanged. Thus, LDEC’s use of linear implication
builds a STRIPS-style (Fikes and Nilsson, 1971)
treatment of action effects into the semantics of the
language, which lets us address the frame problem
without having to write explicit frame axioms.

Previous work has demonstrated LDEC’s versatil-
ity as a language for modelling dialog, by introduc-
ing notions of speaker/hearer supposition and com-
mon ground (Steedman, 2006). This is achieved by
defining a new set of modal operators of the form
[X], that designate the participants in the dialog and
provide a reference point for the shared beliefs that
exist between those participants. For instance, [S]
and [H] refer to the “speaker” and “hearer”, respec-
tively, while [CSH] refers to the common ground be-
tween speaker and hearer.2 Using these modalities

1We treat consumed fluents as being made false.
2Additional participant modalities can be defined as needed.

A set of LDEC background axioms is provided as part of a do-
main to govern the behaviour of these modalities.

266

we can write LDEC formulae that capture common
propositions that arise in dialog. For instance, [S] p
means “the speaker supposes p”, [S] [H] p means
“the speaker supposes that the hearer supposes p”,
and [CSH] [X] p means “it is common ground be-
tween the speaker and hearer that X supposes p”.

In this paper we extend LDEC even further.
First, we recognize the need to model knowledge in
LDEC, which is a necessary prerequisite for plan-
ning with sensing actions, including those needed
for effective discourse. Second, we require that our
extended representation lend itself to tractable rea-
soning, in order to facilitate a practical implementa-
tion. Finally, although LDEC supports classical plan
generation through proof (Steedman, 2002), prior
work has not addressed the problem of translating
LDEC domains into a form that can take advantage
of recent planning algorithms for reasoning with in-
complete information and sensing. For a solution to
these problems we turn to the PKS planner.

3 Planning with Knowledge and Sensing
(PKS)

PKS (Planning with Knowledge and Sensing) is a
knowledge-level planner that can build conditional
plans in the presence of incomplete information and
sensing (Petrick and Bacchus, 2002; Petrick and
Bacchus, 2004). Unlike traditional approaches that
focus on modelling the world state and how actions
change that state, PKS works at a much higher level
of abstraction: PKS models an agent’s knowledge
state and how actions affect that knowledge state.

The key idea behind the PKS approach is that
the planner’s knowledge state is represented using
a first-order language. Since reasoning in a gen-
eral first-order language is impractical, PKS em-
ploys a restricted subset of this language and lim-
its the amount of inference it can perform. This ap-
proach differs from those approaches that use propo-
sitional representations (i.e., without functions and
variables) over which complete reasoning is fea-
sible, or works that attempt to represent complete
sets of possible worlds (i.e., sets of states compati-
ble with the planner’s incomplete knowledge) using
BDDs, Graphplan-like structures, clausal represen-
tations, or other such techniques.

What makes the PKS approach particularly novel

is the level of abstraction at which PKS operates.
By reasoning at the knowledge level, PKS can avoid
some of the irrelevant distinctions that occur at the
world level, which gives rise to efficient inference
and plans that are often quite “natural”. Although
the set of inferences PKS supports is weaker than
that of many possible-worlds approaches, PKS can
make use of non-propositional features such as func-
tions and variables, allowing it to solve problems
that can be difficult for world-level planners.

Like LDEC, PKS is based on a generalization of
STRIPS. In STRIPS, the world state is modelled by
a single database. In PKS, the planner’s knowledge
state, rather than the world state, is represented by a
set of five databases whose contents have a fixed,
formal interpretation in a modal logic of knowl-
edge. To ensure efficient inference, PKS restricts the
types of knowledge (especially disjunctions) each
database can model. We briefly describe three of
these databases (Kf , Kv, and Kw) here.
Kf : This database is like a standard STRIPS
database except that both positive and negative facts
are stored and the closed world assumption is not
applied. Kf can include any ground literal `, where
` ∈ Kf means “` is known”. Kf can also contain
knowledge of function values.
Kv: This database stores information about func-
tion values that will become known at execution
time, such as the plan-time effects of sensing ac-
tions that return numeric values. During planning,
PKS can use Kv knowledge of finite-range functions
to build multi-way conditional branches into a plan.
Kv function terms also act as “run-time variables”—
placeholders for function values that will only be
available at execution time.
Kw: This database models the plan-time effects of
“binary” sensing actions. φ ∈ Kw means that at
plan time the planner either knows φ or knows ¬φ,
and that at execution time this disjunction will be
resolved. PKS uses such “know-whether” facts to
construct binary conditional branches in a plan.

PKS also includes a database (Kx) of known
“exclusive-or” disjunctions and a database (LCW)
for modelling known instances of “local closed
world” information (Etzioni et al., 1994).

Actions in PKS are modelled as queries and up-
dates to the databases. Action preconditions are
specified as a list of primitive queries about the state

267

of the databases: (i) Kp, is p known to be true?, (ii)
Kvt, is the value of t known?, (iii) Kw p, is p known
to be true or known to be false (i.e., does the plan-
ner know-whether p)?, or (iv) the negation of (i)–
(iii). Action effects are described by a set of STRIPS-
like database updates that specify the formulae to
be added to and deleted from the databases. These
updates capture the changes to the planner’s knowl-
edge state that result from executing the action.

Using this representation, PKS constructs plans
by applying actions in a simple forward-chaining
manner: provided an action’s preconditions are sat-
isfied by the planner’s knowledge state, an action’s
effects are applied to form a new knowledge state.
Conditional branches can be added to a plan pro-
vided the planner has Kw or (particular types of) Kv

information. For instance, if the planner has Kw in-
formation about a formula p then it can add a binary
branch to a plan. Along one branch, p is assumed
to be known while along the other branch ¬p is as-
sumed to be known. PKS can also use Kv informa-
tion to denote certain execution-time quantities in a
plan. Planning continues along each branch until all
branches satisfy the goal.

4 Planning Speech Acts with LDEC/PKS

Our approach to planning dialog acts aims to intro-
duce certain features of PKS within LDEC, with the
goal of generating plans using the PKS framework.
In this paper we primarily focus on the representa-
tional issues concerning LDEC, and simply sketch
our approach for completing the link to PKS.

The most important insight PKS provides is its
action representation based on simple knowledge
primitives: K/Kf “know”, Kv “know value”, and
Kw “know whether”. In particular, PKS’s tractable
treatment of this information—which underlies its
databases and queries—is essential to its ability to
build plans with incomplete knowledge and sensing.

In order to model similar conditions of incom-
plete information in LDEC, we introduce a set of
PKS-style knowledge primitives into LDEC in the
form of knowledge fluents (Demolombe and Pozos
Parra, 2000). Knowledge fluents are treated as or-
dinary fluents but are understood to have particular
meanings with respect to the knowledge state. For
instance, in our earlier example of reading a piece

of paper with a telephone number printed on it, we
could use a knowledge fluent KhavePaper to indi-
cate that an agent knows it has the required piece
of paper, KvphoneNumber to represent the result of
reading the phone number from the paper (i.e., the
agent “knows the value of the phone number”), and
Kwconnected to denote the result of actually dialling
the phone number (i.e., the agent “knows whether
the call connected successfully”).

In a dialog setting, we must also ground all
knowledge-level assertions to particular participants
in the dialog, or to the common ground. Other-
wise, such references will have little meaning in a
multi-agent context. Thus, we couple speaker/hearer
modalities together with knowledge fluents to write
LDEC expressions like [S] Kp — “the speaker
knows p”, [H] Kvt — “the hearer knows the value of
t”, or more complex expressions like [CSH] [H] Kw p
— “it’s common ground between the speaker and
hearer that the hearer knows whether p”.

Although we treat knowledge fluents as ordinary
fluents in LDEC, we retain their knowledge-level
meanings with respect to their use in PKS. Thus,
knowledge fluents serve a dual purpose in LDEC.
First, they act as queries for establishing the truth
of particular knowledge-level assertions (e.g., an ac-
tion precondition axiom like [X] Kp ⇒ affords(α)
means “if X knows p then this affords action α”).
Second, they act as updates that specify how knowl-
edge changes due to action (e.g., an effect axiom
like {affords(α)} ([α][X]Kvt means “executing α

causes X to come to know the value of t”). This
correlation between LDEC and PKS is not a coinci-
dence but one, we hope, that will let us use PKS as
a target planner for LDEC domains.

We illustrate our LDEC extensions in the follow-
ing domain axiomatization, which is sufficient to
support planning with dialog acts.

4.1 Background Axioms

(1) [X] p⇒ p Supposition Veridicality

(2) [X]¬p⇒ ¬ [X] p Supposition Consistency

(3) ¬ [X] p⇒ [X]¬ [X] p Negative Introspection

(4) [CSH] p⇔ ([S] [CSH] p ∧ [H] [CSH] p)
Common Ground

268

(5) [X] [CXY] p⇒ [X] p
Common Ground Veridicality

4.2 Initial Facts
(6) a. “I suppose Bonnie doesn’t know what train I

will catch”
b. [S]¬ [B] Kvtrain

(7) a. “If I know what time it is, I know what train
I will catch.”

b. [S] Kvtime⇒ [S] Kvtrain

(8) a. “I don’t know what train I will catch.”
b. [S]¬Kvtrain

(9) a. “I suppose you know what time it is.”
b. [S] [H] Kvtime

(10) a. “I suppose it’s not common ground that I
don’t know what time it is.”

b. [S]¬ [CSH]¬ [S] Kvtime

4.3 Rules
(11) a. “If X supposes p, and X supposes p is not

common ground, X can tell Y p”
b. [X] p ∧ [X]¬ [CXY] p

⇒ affords(tell(X,Y, p))

(12) a. “If X tells Y p, Y stops not knowing it and
starts to know it.”

b. {affords(tell(X,Y, p))} ∧ ¬ [Y] p
([tell(X,Y, p)] [Y] p

(13) a. “If X doesn’t know p and X supposes Y
does, X can ask Y about it.”

b. ¬ [X] p ∧ [X] [Y] p
⇒ affords(ask(X,Y, p))

(14) a. “If X asks Y about p, it makes it common
ground X doesn’t know it”

b. {affords(ask(X,Y, p))}
([ask(X,Y, p)] [CXY]¬ [X] p

Axioms (1) – (5) capture a set of standard assump-
tions about speaker/hearer modalities and common
ground. In (3), we assume the presence of a nega-
tive introspection axiom, however, we do not require
its full generality in practice.3

Axioms (6) – (10) specify a number of initial
facts about speaker/hearer suppositions. In partic-
ular, (10) asserts a speaker supposition about com-

3The weaker property [X]¬p ⇒ [X]¬ [CXY] p (which also
follows from negative introspection) will typically suffice.

mon ground that illustrates the types of conclusions
we typically require. These facts also include two Kv

knowledge fluents, Kvtrain and Kvtime. As in PKS,
these fluents act as placeholders for the values of
known functions that can map to a wide range of
possible values, but whose definite values may not
be known at plan/reasoning time.

Rules (11) – (14) encode action precondition and
effects axioms for two speech acts, ask and tell.

Using this axiomatization, we consider the task of
constructing two dialog-based plans, as a problem of
planning through proof.

4.4 Planning a Direct Speech Act

Goal: I need Bonnie to know which train I’ll catch.

By speaker supposition, the hearer knows what time
it is:

(15) ⇒ [H] Kvtime (9b); (1)

The speaker doesn’t know what time it is:

(16) ⇒ ¬ [S] Kvtime (8b); (2); (7b)

By speaker supposition, Bonnie doesn’t know what
train the speaker will catch:

(17) ⇒ ¬ [B] Kvtrain (6b); (1)

The speaker supposes it’s not common ground with
Bonnie as to what train the speaker will catch:

(18) ⇒ [S]¬ [CSB] Kvtrain (8b); (2); (5); (3); (4)

The situation affords ask(S,H,Kvtime):

(19) ⇒ affords(ask(S,H,Kvtime)) (16); (9b); (13b)

After applying ask(S,H,Kvtime):

(20) ⇒ [CSH]¬ [S] Kvtime (19); (14b)

The situation now affords tell(H,S,Kvtime):

(21) ⇒ affords(tell(H,S,Kvtime))
(15); (20); (4); (5); (11b)

After applying tell(H,S,Kvtime):

(22) ⇒ [S] Kvtime (21); (16); (12b)

—which means I know what train I will catch:

(23) ⇒ [S] Kvtrain (22); (7b)

The situation now affords tell(S,B,Kvtrain)

(24) ⇒ affords(tell(S,B,Kvtrain)) (23); (18); (11b)

After applying tell(S,B,Kvtrain):

269

(25) ⇒ [B] Kvtrain (24); (17); (12b)

4.5 Planning an Indirect Speech Act

The original situation also affords telling the hearer
that I don’t know the time:

(26) ⇒ [S]¬ [S] Kvtime (8b); (2); (7); (3)

(27) ⇒ [S]¬ [CSH]¬ [S] Kvtime (10)

(28) ⇒ affords(tell(S,H,¬ [S] Kvtime))
(26); (27); (11b)

After saying “I don’t know what time it is”—that
is, applying the action tell(S,H,¬ [S] Kvtime),

(29) ⇒ [CSH]¬ [S] Kvtime (14b)

Since (29) is identical to (20), the situation again af-
fords tell(H,S,Kvtime), and the rest of the plan can
continue as before.

Asking the time by saying “I don’t know what
time it is” would usually be regarded as an indirect
speech act. Under the present account, both “direct”
and “indirect” speech acts have effects that change
the same set of facts about the knowledge states of
the participants. Both involve inference. In some
sense, there is no such thing as a “direct” speech act.
In that sense, it is not surprising that indirect speech
acts are so widespread: all speech acts are indirect in
the sense of involving inference. Crucially, the plan
does not depend upon the hearer identifying the fact
that the speaker’s utterance “I don’t know what time
it is” had the illocutionary force of a request or ques-
tion such as “What time is it?”.

From an axiomatic point of view, the above exam-
ples illustrate that the reasoning required to achieve
the desired conclusions is straightforward—in most
cases only direct applications of the domain axioms
are used. Most importantly, we do not need to re-
solve knowledge-level conclusions like Kvtrain at
this level of reasoning and, thus, do not require stan-
dard axioms of knowledge to reason about the for-
mulae within the scope of K/Kv/Kw.

Direct manipulation of fluents like Kvtrain means
that we can manage knowledge and sensing actions
in a PKS-style manner in our account. For instance,
the above plans result in the conclusion [S] Kvtime as
a consequence of the ask and tell actions. The par-
ticular effect of “coming to know the value” of time
means that we should treat these actions as sensing

actions. At the knowledge-level of abstraction, the
effects of ask and tell are no different than the ef-
fect produced by reading a piece of paper to come
to know a telephone number in our earlier example.
This PKS-style use of knowledge fluents also opens
up the possibility of constructing conditional plans
and, ultimately, planning with PKS itself.

4.6 On So-called Conversational Implicature

The fact that we distinguish speaker suppositions
about common ground from the hearer suppositions
themselves means that we can include the following
rules parallel to (11) and (12) without inconsistency:

(30) a. “X can always say p to Y”
b. ⇒ affords(say(X,Y, p))

(31) a. “If X says p to Y, and Y supposes ¬p, then
Y continues to suppose ¬p, and supposes
that ¬p is not common ground.”

b. {affords(say(X,Y, p))} ∧ [Y]¬p
([say(X,Y, p)][Y]¬p ∧ [Y]¬ [C]¬p

Speakers’ calculations about what will follow from
making claims about hearers’ knowledge states ex-
tend to what will follow from making false utter-
ances. To take a famous example from Grice, sup-
pose that we both know that you have done me an
unfriendly turn:

(32) a. “I know that you are not a good friend”
b. [S]¬friendship(h) = good

(33) a. “You know that you are not a good friend”
b. [H]¬friendship(h) = good

After applying say(S,H, friendship(h) = good), say
by uttering the following:

(34) You’re a fine friend!

the following holds:

(35) ⇒ [H]¬friendship(h) = good
∧ [H]¬ [C]¬friendship(h) = good

(32); (33); (31b)
One might not think that getting the hearer to

infer something they already know is very useful.
However, if we assume a mechanism of attention,
whereby things that are inferred become salient,
then we have drawn their attention to their tres-
pass. Moreover, the information state that we have
brought them to is one that would normally suggest,

270

via rules like (11) and (12), that the hearer should tell
the original speaker that they are not a fine friend.
Of course, further reflection (via similar rules we
pass over here) is likely to make the hearer unwilling
to do so, leaving them few conversational gambits
other than to slink silently and guiltily away. This of
course is what the original speaker really intended.

4.7 A Prediction of the Theory
This theory explains, as Grice did not, why this trope
is asymmetrical: the following is predicted to be an
ineffectual way to make a hearer pleasantly aware
that they have acted as a good friend:

(36) #You’re a lousy friend!

It is counterproductive to make the hearer think of
the key fact for themselves. Moreover, there is no
reason for them not to respond to the contradiction.
Unlike (34), this utterance is likely to evoke a vocif-
erous correction to the common ground, rather than
smug acquiescence to the contrary, parallel to the
sheepish response evoked by (34).

5 Discussion

We have presented a number of toy examples in this
paper for purposes of exposition: scaling to realistic
domains will raise all the usual problems of knowl-
edge representation that AI is heir to. However, the
update effects (and side-effects) of discourse plan-
ning that we describe are general-purpose. They
are entirely driven by the knowledge state, without
recourse to specifically conversational rules, other
than some very general rules of consistency main-
tenance in common ground. There is therefore some
hope that conversational planning itself is of low
complexity, and that any domain we can actually
plan in, we can also plan conversations about.

According to this theory, illocutionary acts such
as questioning and requesting are discourse sub-
plans that are emergent from the general rules for
maintaining consistency in the common ground and
for manipulating knowledge-level information, such
as the Kv formulae in our examples. Of course,
for practical applications that require efficient exe-
cution, we can always memoize the proofs of such
frequently-used sub-plans in the way that is standard
in Explanation-Based Learning (EBL). For instance,
by treating action sequences as “compound” actions

in the planning process, we would be in effect com-
piling them into a model of dialog state-change of
the kind that is common in practical dialog manage-
ment. More importantly, the present work offers a
way to derive such models automatically from first
principles, rather than laboriously constructing them
by hand.

In contrast to approaches that reject the planning
model on complexity grounds, e.g., (Beun, 2001),
our choice of a planner with limited reasoning capa-
bilities and knowledge resources—conditions often
cited as underlying human planning and dialog—
aims to address such concerns directly. Furthermore,
the specialized rules governing speech act selection
in alternate approaches can always be adopted as
planning heuristics guiding action choice, if existing
planning algorithms fail to produce sufficient plans.

We have also argued that LDEC, extended with
PKS-style knowledge primitives, is sufficient for
planning dialog actions. Although we have moti-
vated a correspondence between LDEC and PKS,
we have not described how PKS planning domains
can be formed from LDEC axioms. While some
of the mechanisms needed to support a translation
already exist—the compilation of LDEC rules into
PKS queries and database updates is straightforward
and syntactic—we have yet to extend PKS’s infer-
ence rules to encompass speaker/hearer modalities,
and formally prove the soundness of our transla-
tion. We are also exploring the use of PKS’s LCW
database to manage common ground as a form of
closed world information. (For example, if a partici-
pant X cannot establish p as common ground then
X should assume p is not common ground.) Fi-
nally, we require a comprehensive evaluation of our
approach to assess its feasibility and scalability to
more complex dialog scenarios. Overall, we are op-
timistic about our prospects for adapting PKS to the
problem of planning dialog acts.

Acknowledgements

The work reported in this paper was partially funded
by the European Commission as part of the PACO-
PLUS project (FP6-2004-IST-4-27657), and by the
NSF under grant number NSF-IIS-0416128.

271

References
Nicholas Asher and Alex Lascarides. 2003. Logics of Conver-

sation. Cambridge University Press, Cambridge.

Robbert-Jan Beun. 2001. On the generation of coherent dia-
logue. Pragmatics and Cognition, 9:37–68.

Wolfgang Bibel, Luis Farinas del Cerro, B. Fronhfer, and
A. Herzig. 1989. Plan generation by linear proofs: on se-
mantics. In German Workshop on Artificial Intelligence -
GWAI’89, volume 216 of Informatik-Fachberichte, Berlin.
Springer Verlag.

Michael Bratman, David Israel, and Martha Pollack. 1988.
Plans and resource-bounded practical reasoning. Computa-
tional Intelligence, 4:349–355.

Jennifer Chu-Carroll and Sandy Carberry. 1995. Response gen-
eration in collaborative negotiation. In Proceedings of ACL-
95, pages 136–143. ACL.

Philip Cohen and Hector Levesque. 1990. Rational interac-
tion as the basis for communication. In Philip Cohen, Jerry
Morgan, and Martha Pollack, editors, Intentions in Commu-
nication, pages 221–255. MIT Press, Cambridge, MA.

Robert Demolombe and Maria del Pilar Pozos Parra. 2000. A
simple and tractable extension of situation calculus to epis-
temic logic. In Proceedings of ISMIS-2000, pages 515–524.

Oren Etzioni, Steve Hanks, Daniel Weld, Denise Draper, Neal
Lesh, and Mike Williamson. 1992. An approach to plan-
ning with incomplete information. In Proceedings of KR-92,
pages 115–125.

Oren Etzioni, Keith Golden, and Daniel Weld. 1994. Tractable
closed world reasoning with updates. In Proceedings of KR-
94, pages 178–189. Morgan Kaufmann Publishers.

Richard Fikes and Nils Nilsson. 1971. Strips: a new approach
to the application of theorem proving to problem solving.
Artificial Intelligence, 2:189–208.

Jean-Yves Girard. 1987. Linear logic. Theoretical Computer
Science, 50:1–102.

Nancy Green and Sandra Carberry. 1994. A hybrid reason-
ing model for indirect answers. In Proceedings of ACL-94,
pages 58–65. ACL.

Barbara Grosz and Candace Sidner. 1990. Plans for discourse.
In Philip Cohen, Jerry Morgan, and Martha Pollack, editors,
Intentions in Communication, pages 417–444. MIT Press,
Cambridge, MA.

David Harel. 1984. Dynamic logic. In Dov Gabbay and
F. Guenthner, editors, Handbook of Philosophical Logic,
volume II, pages 497–604. Reidel, Dordrecht.

Robert Kowalski and Maurice Sergot. 1986. A logic-based
calculus of events. New Generation Computing, 4:67–95.

Lynn Lambert and Sandra Carberry. 1991. A tripartite plan-
based model of dialogue. In Proceedings of ACL-91, pages
47–54. ACL.

Diane Litman and James Allen. 1987. A plan recognition
model for subdialogues in conversation. Cognitive Science,
11:163–200.

Colin Matheson, Massimo Poesio, and David Traum. 2000.
Modeling grounding and discourse obligations using update
rules. In Proceedings of NAACL 2000, Seattle.

Nicolas Maudet. 2004. Negotiating language games. Au-
tonomous Agents and Multi-Agent Systems, 7:229–233.

John McCarthy and Patrick Hayes. 1969. Some philosophi-
cal problems from the standpoint of artificial intelligence. In
Bernard Meltzer and Donald Michie, editors, Machine In-
telligence, volume 4, pages 473–502. Edinburgh University
Press, Edinburgh.

Robert Moore. 1985. A formal theory of knowledge and ac-
tion. In Jerry Hobbs and Robert Moore, editors, Formal
Theories of the Commonsense World, pages 319–358. Ablex,
Norwood, NJ. Reprinted as Ch. 3 of (Moore, 1995).

Robert Moore. 1995. Logic and Representation, volume 39
of CSLI Lecture Notes. CSLI/Cambridge University Press,
Stanford CA.

Leora Morgenstern. 1988. Foundations of a Logic of Knowl-
edge, Action, and Communication. Ph.D. thesis, NYU,
Courant Institute of Mathematical Sciences.

Ronald P. A. Petrick and Fahiem Bacchus. 2002. A knowledge-
based approach to planning with incomplete information and
sensing. In Proceedings of AIPS-02, pages 212–221.

Ronald P. A. Petrick and Fahiem Bacchus. 2004. Extending
the knowledge-based approach to planning with incomplete
information and sensing. In Proc. of ICAPS-04, pages 2–11.

Satinder Singh, Diane Litman, Michael Kearns, and Marilyn
Walker. 2002. Optimizing dialogue management with re-
inforcement learning: Experiments with the NJFun system.
Journal of Artifial Intelligence Research, 16:105–133.

Mark Steedman. 1997. Temporality. In Johan van Benthem
and Alice ter Meulen, editors, Handbook of Logic and Lan-
guage, pages 895–938. North Holland/Elsevier, Amsterdam.

Mark Steedman. 2002. Plans, affordances, and combinatory
grammar. Linguistics and Philosophy, 25:723–753.

Mark Steedman. 2006. Surface compositional semantics of
intonation. In submission.

Matthew Stone. 1998. Abductive planning with sensing. In
Proceedings of AAAI-98, pages 631–636, Menlo Park CA.
AAAI.

Matthew Stone. 2000. Towards a computational account of
knowledge, action and inference in instructions. Journal of
Language and Computation, 1:231–246.

David Traum and James Allen. 1992. A speech acts approach
to grounding in conversation. In Proceedings of ICSLP-92,
pages 137–140.

R. Michael Young and Johanna D. Moore. 1994. DPOCL:
a principled approach to discourse planning. In Proceed-
ings of the 7th International Workshop on Natural Language
Generation, pages 13–20.

272

