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Abstract 
This paper presents a novel method to automatically validate terminology consistency in localized materials. The goal of the paper is 
two-fold. First, we explore a way to extract phrase pair translations for compound nouns from a bilingual corpus using word alignment 
data. To validate the quality of the extracted phrase pair translations, we use a Gaussian mixture model (GMM) classifier. Second, we 
quantify consistency of translation as a measurement of quality. With this approach, a quality assurance process for terminology 
translation can be fully automated. It can also be used for maintaining bilingual training data quality for machine translation.   
 

1. Introduction  

Consistency is one of the primary quality measurements 
of translation.  However, terminology can be translated 
differently, depending on a given context.  For instance, 
one source term (e.g., “file name” in English) can have 
multiple variations in the target language (e.g., “ファイル
の名前”, “ファイル名”, “文書名” in Japanese).  Having 
multiple translations for such terms is inevitable by nature.   
However, if inconsistent term translations occur in similar 
contexts or are used for the same product, it is confusing 
to users.  Consistency in terminology translations is 
critical to the readability of localized materials. 

Consistency in terminology translations is also critical 
to any example-based/statistical machine translation (MT) 
quality. The quality of such MT systems depends on the 
quality of their training data.  Any inconsistency in 
terminology translations could lead to lower MT quality. 

Terminology translation inconsistency may derive from 
different sources, such as a lack of standardized 
terminology data. For instance, product development 
groups in a software company could use their own 
terminology and translations. Under such circumstances, 
the task of controlling terminology and checking 
terminology consistency is quite challenging.   

Human errors might be another cause for terminology 
inconsistency.  For instance, using a translation memory 
(TM) tool that recycles previous translations, a translator 
could blindly copy an old translation without paying 
attention to a given context.  Again, controlling such 
situations is almost impossible. 

In this paper, we explore a way to extract a bilingual 
compound noun list and check terminology translation 
consistency of the extracted terms automatically.  We start 
with the process of mining compound nouns from 
English-Japanese bilingual corpus data.  This process 
consists of two steps: (i) extracting a list of compound 
nouns from the source language data (in our experiments, 
English is the source language) and (ii) extracting a 
bilingual phrase table.  The first step utilizes the part-of-
speech (POS) information of the data.  The second step 
uses the word-alignment information provided by Giza++.  
The intersection of the two becomes our initial list.  We 
use a Gaussian mixture-model (GMM) classifier to find 

valid phrase pair translations from this list. The final step 
is to measure the terminology translation consistency. We 
devise a consistency index utilizing Herfindahl-
Hirschman Index (Herfindahl, 1959; Hirshman, 1964), a 
commonly used measurement of market concentration.  

The organization of the paper is as follows: Section 2 
describes the data we used and the process of extracting 
English compound nouns.  Section 3 presents the process 
of extracting phrase pair translations for compound nouns 
from our bilingual corpus data.  Section 4 describes the 
GMM classifier used in our experiment and the results of 
the experiment.  Section 5 addresses the problem of 
terminology consistency and describes the consistency 
index we devised.  Section 6 provides a summary of the 
paper and concluding remarks. 
 

2. Data & Extraction of English Compound 
Nouns  

2.1 Data  

We used English-Japanese parallel corpus data from 
software user interface (UI) strings, such as menu items, 
error messages and wizard text.  Table 1 provides the size 
of the data used in the proposed experiments as well as the 
number of the products involved in the data.  
 

 Sentences # of Products 

English/Japanese 300K 104 

 

    Table 1: Training data 

2.2 Extraction Method  

We extracted English compound nouns from the training 

data. To identity compound nouns in the English corpus, 

we parsed and analyzed the part-of-speech for all English 

sentences, using an English parser developed at Microsoft 

Research (NLPWin) (Heidorn, 2000). Then, we extracted 

consecutive-noun terms such as N/N as in “file name” and 

N/N/N as in “application programming interface”. The 

number of noun words within one compound term was 

limited to five.  



We identified a total of 38,519 compound nouns from 

the English data of the English-Japanese corpus. Table 2 

provides some samples of extracted compound nouns. 

 
form template file type 

disk space data connection 

user name company accounts 

tools menu database retrieval service 

color scheme dialog boxes 

web browser network access 

start date path name 

file type security information 

 

Table 2: Sample compound nouns 

3. Phrasal Alignment Process 

Independently of the English compound noun extraction, 

we extracted a phrase table from the bilingual corpus data 

as shown in Table 1. The Giza++ (Och and Ney, 2000c) 

toolkit for IBM models (Brown et al., 1994) and HMM 

(Och and Ney, 2000a) is used to provide word alignment 

for the bilingual data. During implementation, we 

performed five iterations of model 1, followed by five 

iterations of HMM and then five iterations of model 4. As 

in Koehn et al. (2003), the bilingual corpus is aligned 

bidirectionally, i.e., first we perform word alignment from 

English to Japanese and second from Japanese to English, 

respectively. Then these two alignments are combined to 

form the final word alignment with the heuristics 

described in Och and Ney (Och and Ney, 2000b).  From 

the bidirectional word alignment, we extracted phrasal 

translation pairs that are consistent with the word 

alignment. This means that words in a phrase pair are only 

aligned to each other (Och et al., 1999). The maximum 

phrase length used in our experiments was set to four.   

We now have two lists: (i) the list of the English 

compound noun described in Section 2.2 and (ii) the list 

of the bilingual phrasal translation pairs. We simply 

extracted the overlap between the two lists; that is, the 

phrase pairs whose English side strings are the same 

strings as those in the English compound noun list. The 

overview of the bilingual compound noun extraction 

process is described in Figure 1 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Extraction of the initial bilingual phrase table for 

compound nouns 

 

The extracted bilingual phrasal translation pairs are far 

from perfect.  For instance, Table 3 provides some 

examples from the initial English-Japanese phrase table,. 

 

server administrator network connection 

サーバー の 管理者 ネットワーク へ 接続* 

サーバー 管理者 ネットワーク の 接続 

参加 依頼* ネットワーク は 接続* 

依頼* ネットワーク 接続 

 

Table 3: Examples of phrase pair translations for English 

and Japanese  

 

The items with an asterisk in the above tables are not 

the proper target candidates for the English compound 

nouns in question.  We explored a statistical method to 

eliminate such false candidates while keeping the recall as 

high as possible.  This method is described in Section 4. 

4. Calculating Translation Validity 

4.1 Features for Translation Validity  

When extracting phrase tables we can also estimate phrase 

translation probabilities. That is, if we use s to denote the 

phrase at the source side and t to denote the phrase at the 

target side, we can estimate the probability of translating s 

to t by relative frequency (Koehn et al., 2003). 

 

'

( , )
( | )

( ', )
t

count t s
p t s

count t s



  

 
In our implementation, for each phrase pair we actually 

estimate two probabilities, p(t|s) and p(s|t), for 

translations from the source phrase to the target phrase 

and from the target phrase to the source phrase, 

respectively. Both probabilities are estimated by relative 

frequency as shown above. In the following sections, we 

will call them MLE1 and MLE2 scores, respectively.  

MLE1 and MLE2 scores describe the likelihood of 

translating s to t and vice versa. Based on these two scores, 

we can further build a classifier to decide whether the 

translation of phrase s to t is a valid translation.  

In order to train a translation validity classifier, we first 

built a training set. We drew a number of phrase pairs 

from the phrase table, and asked a human annotator to 

mark each of them as either valid or invalid translation. In 

Fig. 2, we plot out the (MLE1,MLE2) scores of phrase 

pairs in our English-Japanese classifier training set, where 

the cross mark „x‟ represents an invalid translation, and 

the circle mark „o‟ represents a valid translation. As 

expected, most invalid translations have both low MLE1 

and MLE2 scores. 

Source 

(English) 

Target 

(Japanese) 

Extraction 

of 

compound 

nouns 

Word-alignment 

Extraction of phrase pair 

translations 

Intersection => Bilingual Phrase Table for 

Compound Nouns 



 
Figure 2, illustration of feature distribution of training 

data. The horizontal axis is MLE1, vertical axis is MLE2. 

4.2 Gaussian Mixture Model based Classifier  

In our method, the Gaussian mixture model is used to 

build a Bayesian classifier (Bishop, 2006). Compared with 

other classifiers such as Support Vector Machine (SVM), 

GMM based classifier provides not only the classification 

decision, but also a posterior probability of the 

classification results, which usually can be used as a 

confidence measure. Moreover, with adequate number of 

mixtures, GMM can approach arbitrary distributions well. 

In GMM based classification, we build two GMMs, 
v

and
i , for the valid translation class and the invalid 

translation class, respectively. The GMM takes the 

following form: 
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where K is the number of Gaussian compounds in the 

GMM, ck is a positive mixture weight of the k-th Gaussian 

component, and
1

1
K

kk
c


 . ( | , )k kN x    is a 

Gaussian distribution taking the following form: 
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where k  and k  are the mean vector and covariance 

matrix of the k-th Gaussian component, D is the 

dimension of feature vector x. In our approach, the feature 

vector includes two features, MLE1, and MLE2, i.e., 

x=[MLE1, MLE2]
T
. Therefore, D = 2, 𝜇 k  and k is a 

two dimension vector and a 2 by 2 matrix, respectively. 

To further reduce the number of free parameters, we use 

diagonal covariance matrix, i.e., only the diagonal 

elements of k have non-zero values. 

Given training samples of valid translations and  invalid 

translations, the parameters of
v and

i , including 

mixture weights, mean vectors and covariance matrices of 

Gaussian mixtures, can be trained using the maximum 

likelihood (ML) criterion. Specifically, for the GMM of 

the valid translation class, 
v  is trained by: 

 

1

arg max ( | )
N

v n

n

p x


 


   

where xn, n=1,…,N are N feature vectors of training 

samples marked as valid translations. The Efficient 

Expectation-Maximization (EM) algorithm exists to 

estimate model parameters of 
v  (Bishop, 2006). 

Similarly, we can estimate λi for invalid translation class.  

In classification, according to the Bayes‟ rule, a testing 

translation pair with feature vector y is classified to the 

class C(y) as follows (Bishop 2006) 
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which can achieve a minimum Bayes risk under 0-1 loss 

condition. in(2),  ( | )Cp y   is computed according to (1), 

and p( c ) is the prior probability of class C, which is 

either valid or invalid. in our method. This prior 

probability is simply estimated from the classifier training 

data set by relative frequency, i.e., for p( v ), 

 

(  translation pairs)
( )

(total translation pairs)
v

count valid
p

count
   

and  p( p ) = 1 - p(
v ).  

4.3 Experimental Results  

In order to evaluate the classifier, we have conducted 

experiments on the English-Japanese language pair. The 

training and test data are summarized in table 4 .In the 

development set (Dev), we have a total of 262 translation 

pairs from the raw phrase table. Of these, 183 are marked 

as valid translation pairs by human annotators, and 79 are 

marked as invalid. In the test set (Test), 188 out of 281 

phrase pairs are valid translation pairs, and 93 of them are 

not. There is no overlap between the Dev set and the Test 

set. 

 
Sample counts Dev    Test        

valid translation 

pairs 

183 188 

Invalid translation 

pairs 

79 93 

 

Table 4: Training and test data for translation validity 

classification 
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During evaluation, we measured the classification 

performance using Precision and Recall of valid 

translation pairs, and we also computed the F-measure of 

valid translation pairs as the classification accuracy. 

Specifically, the Precision rate, Recall rate, and F-measure 

are defined at below.  

 

(correct classified  pairs)

(total classified  pairs)

count valid
P

count valid
  

 

(correct classified  pairs)

(total true  pairs)

count valid
R

count valid
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In experiments, for the baseline, we accept all phrase 

pairs in the raw phrase table as valid translation pairs. We 

then apply the GMM classifier to determine each 

translation pair is valid or not. In training, the GMMs for 

valid translation and invalid translation are trained based 

on the Dev set. Then these models are applied to classify 

each translation pair in the Test set into either valid or 

invalid class based on (2). In implementation, six 

components per GMM are used. The results are tabulated 

in Table 5. 

 

English 

/Japanese 

Precision Recall F-measure 

baseline 0.6690 1.0000 0.8017 

GMM 0.8780 0.9574 0.9160 

 

Table 5: translation validity classification results for the 

English / Japanese language pair. 

 

From these results, we can see that the performance of 

GMM-based translation validity classification is pretty 

good. Compared with the baseline that all raw phrase 

pairs are accepted, GMM classification can give a much 

higher precision rate of the valid translation pairs, with a 

slight drop of recall. Overall, it improves the validity 

classification accuracy by more than 10% when measured 

by the F-measure score.  

 

5. Calculating the Consistency Index  

5.1 Measurement of Consistency  

Using the translation validity model described in the 

previous section, we checked whether extracted 

compound nouns are translated consistently in and across 

products.  

Let us take up the case of “value type” and its Japanese 

translations to explain the consistency validation process. 

First of all, the created phrasal alignment data shows the 

following translation variations and maximum likelihood 

estimated (MLE) values. 

 

 

Terms Trans. ML1E 

(s/t) 

MLE2 

(t/s) 

Validity  

(w/ 

GMM) 

value type 値の種類 0.04 0.5 True 

value type 値の型 0.4 0.3846 True 

value type 値型 0.4 0.2941 True 

value type 値 0.12 0.0004 False 

value type 型の値 0.04 0.25 False 

 

Table 8: Translations of “value type” and maximum 

likelihood 

 

Then we analyzed the values with the Gaussian mixture 

model to find out that the first three translations are valid. 

The fourth translation is mapped only to the translation of 

“value,” which could be regarded as an alignment error. 

The last translation means “value of type,” which is a 

wrong translation.  

Then we go back to the bilingual corpus and find cases 

where “value type” is translated into any of the three 

variations. Actual occurrences of “value type” are shown 

in Table 9, sorted by product. 

 

Product names Translations Frequencies 

.NET Framework 値の型 15 

  値の種類 1 

  値型 23 

Dynamics AX 値の型 4 

Exchange Server 値の型 3 

  値の種類 1 

Outlook 値の型 1 

SQL Server 値の型 5 

  値型 1 

Visual Studio 値の型 18 

  値型 55 

 

Table 9: Translation variations for “value type” sorted by 

product 

 

For example, in .NET Framework, all three translations 

(値の型 , 値の種類  and 値型 ) occur with certain 

frequencies. In the case of SQL Server, there are two 

translations, 値の型 and 値型. In general, the number of 

translation variations per se does not directly reflect the 

quality of the translations. For example, while SQL Server 

has the first type of translation (値の型) five times, there 

is only one other kind (値型). This needs to be penalized 

in terms of quality measurement due to its multiplicity in 

translations. However, the penalty should be minimal 

compared to Visual Studio. That product has 18 of the first 

translation (値の型) and 55 of the second translation (値

型). This is apparently confusing to readers since both 

have a considerable number of occurrences.   

Meanwhile, some terms are consistently translated 

across products. One example is “Web server”, which is 

shown in Table 10.  

 

 

 

 



Product names Translations Frequency 

.NET Framework Web サーバー 12 

Access Web サーバー 2 

BackOffice - Servers Web サーバー 2 

BizTalk Server Web サーバー 10 

Code Advisor for 

Visual Basic Web サーバー 1 

Commerce Server Web サーバー 23 

   

Table 10: Translation of “Web server”  

 

“Web server” is translated consistently into one 

translation for each product. The quality of translation 

consistency for such a case is therefore quite high.  

5.2 Evaluation of Consistency  

Translation consistency for an English term is calculated 

with two factors – the number of translation variations 

within a product and frequencies for each variation. For 

example, if one product has only one translation for a 

certain English term, this should be given the highest 

score. As in Table 9, there is only one translation for 

“value type” in Dynamics AX.   

 

Product names Translations Frequency 

Dynamics AX 値の型 4 
 

Table 11: The case of the most consistent translation 

 

When there are multiple translations within a product, 

but still the ratio of minority translations is very limited, 

the scores should remain high.  

 

Product names Translations Frequency 

SQL Server 値の型 5 

  値型 1 
 

Table 12: The case of relatively consistent translations 

 

We penalize cases in which there are multiple 

translations within a product and the majority of 

translations are not concentrated in one translation. In the 

case of .Net Framework, both the first and third 

translations have high frequencies, and there is another 

variation (the second one), although its frequency is very 

low.   

 

Product names Translations Frequency 

.NET Framework 値の型 15 

  値の種類 1 

  値型 23 
 

Table 13: The case of less consistent translations 

5.3 Consistency Index  

To measure the overall translation consistency for a 

source term, we first look at distribution of multiple 

translations within each product. Here we utilize the 

Herfindahl-Hirschman Index (HHI), a commonly 

accepted measurement of market concentration.  

HHI = 


n

i

is
1

2
 

S is the market share of firm i in the market, and n is the 

number of firms. HHI becomes 10000 (= 100
2
) when one 

single firm dominates the entire market. When 10 firms 

have 10% each, the index is 1000.  

In the case of translation consistency, S becomes the 

ratio of each translation (i) to the total number of 

translations (n) within a product. As a result, when one 

product has translation variations for one source term, the 

HHI score that represents “intra-product” consistency 

becomes lower. 

After we calculate the HHI scores for all products, we 

take an average to create an overall translation 

consistency index(C) for a source term as follows: 

 

C t  = 
p

k

fn

n

i

p


1

2)100x(

 

In this equation, p is the number of products that have the 

source term (t), and each “frequency share” is calculated 

as the ratio of its frequency (f) to the total translation 

occurrence within a product (k). 

With this formula, the consistency of “value type” as 

shown in Table 14 is calculated as following: 

 

Products Trans. Freq. 
2)100x(

k

f

 




n

i

i
k

f

1
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.NET 

Framework 

  

  

値の型 15 1479.3 4963.8 
値の種類 1 6.6 

値型 23 3478.0 

Dynamics 

AX 
値の型 4 10000.0 10000.0 

Exchange 

Server 

  

値の型 3 5625.0 6250.0 
値の種類 1 625.0 

Outlook 値の型 1 10000.0 10000.0 
SQL Server 

  
値の型 5 6944.4 7222.2 
値型 1 277.8 

Visual 

Studio 

  

値の型 18 608.0 6284.5 
値型 55 5676.5 

 

Table 14: Calculation of Consistency Index for “value 

type” 

 

C(“value type”)= 
p

k

fn

i

i

p


1

2)100x(

= 7453.4 

 

In the meantime, the translation consistency index for 

“Web server” is 10000 since intra-product consistency for 

all products is 10000. Therefore, the translation of “Web 

server” is completely consistent.  



5.4 Application of the Consistency Index  

The translation consistency index can be effectively 

used for quality assurance of translation data. One of the 

most difficult tasks in translation quality assurance is to 

find defects in the translations, such as inconsistent and 

wrong terminology translations. Since bilingual text data 

usually has a number of source and target segments and 

sentences, identifying multiplicity in translations in a 

large text data set always requires systematic approaches. 

Therefore, the translation consistency index could be a 

good tool for quality assurance (QA) automation.     

  To use it as such, we have normalized the index so that it 

ranges between 0 – 100. The consistency index for “value 

type” and “Web server” can therefore be shown as: 

 

 “value type” – Consistency Index: 74.5 

 “Web server” – Consistency Index: 100.0 

 

The index can also be used as an indicator of 

“translation stability.” When the system shows a 

consistency index of “100” for “Web server,” this 

indicates to translators that they should not create any new 

translation variations unless it is truly necessary. The 

higher index could also mean that translators do not need 

to spend too much time in terminology research since they 

could simply follow existing translations identified in old 

data. On the other hand, when a translator sees the 

consistency index of 74.5, or a relatively low consistency, 

this could indicate that the translator should not easily 

pick up one of the multiple translation variations without 

fully examining the context.  

6. Concluding Remarks 

This paper explored a way to extract phrase pair 

translations for compound nouns from a English-Japanese 

parallel corpus and to check translation.  As mentioned at 

the outset of the paper, inconsistent terminology 

translations could lead to MT quality issues.  In this 

connection, we would like to address some of our future 

plans. 

At Microsoft, we have been localizing technical 

documents for several years, using a statistical MT system 

called MSR-MT (Quirk, et al., 2005).  To enhance the 

quality of terminology translation of MSR-MT, we hope 

to be able to plug the proposed method into our MT 

workflow.  We envision that this will help us to create an 

MT-friendly eco-system across different product groups.  

Also, we are entertaining some application ideas of the 

proposed term mining process in post-editing contexts.  

One of the major issues that post-editors face in post-

editing contexts lies in the verification and correction of 

the terminology in MT output.  To facilitate this process, 

we can create a bilingual terminology look-up tool for any 

language pairs, using phrase pair translations extracted 

from our training data.  An advantage of this is that the 

data can be domain-specific and customizable.  We can 

see great potential in increasing the productivity of post-

editing efforts in this respect. 
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