
Statistical Syntax-Directed Translation with Extended Domain of Locality

Liang Huang
University of Pennsylvania

Philadelphia, PA 19104
lhuang3@cis.upenn.edu

Kevin Knight
USC/ISI

Marina del Rey, CA 90292
knight@isi.edu

Aravind Joshi
University of Pennsylvania

Philadelphia, PA 19104
joshi@cis.upenn.edu

Abstract

In syntax-directed translation, the source-
language input is first parsed into a parse-
tree, which is then recursively converted
into a string in the target-language. We
model this conversion by an extended tree-
to-string transducer that has multi-level
trees on the source-side, which gives our
system more expressive power and flexi-
bility. We also define a direct probabil-
ity model and use a linear-time dynamic
programming algorithm to search for the
best derivation. The model is then ex-
tended to the general log-linear frame-
work in order to incorporate other features
like n-gram language models. We devise
a simple-yet-effective algorithm to gener-
ate non-duplicate k-best translations for n-
gram rescoring. Preliminary experiments
on English-to-Chinese translation show a
significant improvement in terms of trans-
lation quality compared to a state-of-the-
art phrase-based system.

1 Introduction

The concept of syntax-directed translation was
originally proposed in compiling (Irons, 1961;
Lewis and Stearns, 1968; Aho and Ullman, 1972),
where the source program is parsed into a tree rep-
resentation that guides the generation of the object
code. In other words, the translation is directed by
a syntactic tree. In this context, a syntax-directed
translator consists of two components, a source-
language parser and a recursive converter which
is usually modeled as a top-down tree-to-string
transducer (Gécseg and Steinby, 1984).

This paper adapts the idea of syntax-directed
translation to statistical machine translation (MT).
We apply stochastic operations at each node of the
source-language parse-tree and search for the best

S

NP(1)
↓

VP

VB(2)
↓ NP(3)

↓

,
S

VB(2)
↓ NP(1)

↓ NP(3)
↓

Figure 1: An example of complex reordering rep-
resented as an STSG rule, which is beyond any
SCFG.

derivation (a sequence of translation steps) that
converts the whole tree into some target-language
string with the highest probability. However, the
structural divergence across languages often re-
sults in non-isomorphic parse-trees that is beyond
the power of SCFGs. For example, the S(VO)
structure in English is translated into a VSO word-
order in Arabic, an instance of complex reordering
not captured by any SCFG (Fig. 1).

To alleviate the non-isomorphism problem,
(synchronous) grammars with richer expressive
power have been proposed whose rules apply to
larger fragments of the tree. For example, Shieber
and Schabes (1990) introduce synchronous tree-
adjoining grammar (STAG) and Eisner (2003)
uses a synchronous tree-substitution grammar
(STSG), which is a restricted version of STAG
with no adjunctions. STSGs and STAGs gener-
ate more tree relations than SCFGs, e.g. the non-
isomorphic tree pair in Fig. 1. This extra expres-
sive power lies in the extended domain of locality
(EDL) (Joshi and Schabes, 1997), i.e., elementary
structures beyond the scope of one-level context-
free productions. Besides being linguistically mo-
tivated, the need for EDL is also supported by em-
pirical findings in MT that one-level rules are often
inadequate (Fox, 2002; Galley et al., 2004). Sim-
ilarly, in the tree-transducer terminology, Graehl
and Knight (2004) define extended tree transduc-
ers that have multi-level trees on the source-side.

Since syntax-directed translation models sep-
66

Proceedings of the 7th Conference of the Association for Machine Translation in the Americas, pages 66-73,
Cambridge, August 2006. ©2006 The Association for Machine Translation in the Americas

arate the source-language analysis from the re-
cursive transformation, the domains of locality in
these two modules are orthogonal to each other:
in this work, we use a CFG-based Treebank parser
but focus on the extended domain in the recur-
sive converter. Following Galley et al. (2004),
we use a special class of extended tree-to-string
transducer (xRs for short) with multi-level left-
hand-side (LHS) trees.1 Since the right-hand-
side (RHS) string can be viewed as a flat one-
level tree with the same nonterminal root from
LHS (Fig. 1), this framework is closely related to
STSGs: they both have extended domain of local-
ity on the source-side, while our framework re-
mains as a CFG on the target-side. For instance,
an equivalent xRs rule for the complex reordering
in Fig. 1 would be

S(x1:NP, VP(x2:VB, x3:NP))→ x2 x1 x3

While Section 3 will define the model formally,
we first proceed with an example translation from
English to Chinese (note in particular the inverted
phrases between source and target):

(1) the gunman was killed by the police .

qiangshou
[gunman]

bei
[passive]

jingfang
[police]

jibi
[killed]

◦

.

Figure 2 shows how the system works. The En-
glish sentence (a) is first parsed into the tree in (b),
which is then recursively converted into the Chi-
nese string in (e) through five steps. First, at the
root node, we apply the rule r1 which preserves
the top-level word-order and translates the English
period into its Chinese counterpart:

(r1) S (x1:NP-C x2:VP PUNC (.)) → x1 x2 ◦

Then, the rule r2 grabs the whole sub-tree for “the
gunman” and translates it as a phrase:

(r2) NP-C (DT (the) NN (gunman)) →
qiangshou

Now we get a “partial Chinese, partial English”
sentence “qiangshou VP ◦” as shown in Fig. 2 (c).
Our recursion goes on to translate the VP sub-tree.
Here we use the rule r3 for the passive construc-
tion:

1Throughout this paper, we will use LHS and source-side
interchangeably (similarly, RHS and target-side). In accor-
dance with our experiments, we also use English and Chinese
as the source and target languages, opposite the Foreign-to-
English convention of Brown et al. (1993).

(a) the gunman was [killed]1 by [the police]2 .

parser ⇓

(b)

S

NP-C

DT

the

NN

gunman

VP

VBD

was

VP-C

VBN

killed

PP

IN

by

NP-C

DT

the

NN

police

PUNC

.

r1, r2 ⇓

(c) qiangshou

VP

VBD

was

VP-C

VBN

killed

PP

IN

by

NP-C

DT

the

NN

police

◦

r3 ⇓

(d) qiangshou bei

NP-C

DT

the

NN

police

VBN

killed
◦

r5 ⇓ r4 ⇓

(e) qiangshou bei [jingfang]2 [jibi]1 ◦

Figure 2: A synatx-directed translation process for
Example (1).

(r3)

VP

VBD

was

VP-C

x1:VBN PP

IN

by

x2:NP-C

→ bei x2 x1

which captures the fact that the agent (NP-C, “the
police”) and the verb (VBN, “killed”) are always
inverted between English and Chinese in a passive
voice. Finally, we apply rules r4 and r5 which
perform phrasal translations for the two remain-
ing sub-trees in (d), respectively, and get the com-
pleted Chinese string in (e).

67

2 Previous Work

It is helpful to compare this approach with re-
cent efforts in statistical MT. Phrase-based mod-
els (Koehn et al., 2003; Och and Ney, 2004) are
good at learning local translations that are pairs of
(consecutive) sub-strings, but often insufficient in
modeling the reorderings of phrases themselves,
especially between language pairs with very dif-
ferent word-order. This is because the generative
capacity of these models lies within the realm of
finite-state machinery (Kumar and Byrne, 2003),
which is unable to process nested structures and
long-distance dependencies in natural languages.

Syntax-based models aim to alleviate this prob-
lem by exploiting the power of synchronous
rewriting systems. Both Yamada and Knight
(2001) and Chiang (2005) use SCFGs as the un-
derlying model and do parsing and transformation
in a joint search, essentially over a packed for-
est of parse-trees. To this end, their methods are
not directed by a syntactic tree. Although their
method potentially considers more than one single
parse-tree as in our case, the packed representa-
tion of the forest restricts the scope of each trans-
fer step to a one-level context-free rule, while our
approach decouples the source-language analyzer
and the recursive converter, so that the latter can
have an extended domain of locality. In addition,
our model also enjoys a speed-up by this decou-
pling, with each of the two stages having a smaller
search space. In fact, the recursive transfer step
can be done by a linear-time algorithm (see Sec-
tion 5), and the parsing step is also fast with the
modern Treebank parsers, for instance (Collins,
1999; Charniak, 2000). In contrast, their decod-
ings are reported to be computationally expen-
sive and Chiang (2005) uses aggressive pruning
to make it tractable. There also exists a compro-
mise between these two approaches, which uses a
k-best list of parse trees (for a relatively small k)
to approximate the full forest (see future work).

Our model, being linguistically motivated, is
also more expressive than the formally syntax-
based models of Chiang (2005) and Wu (1997).
Consider, again, the passive example in rule r3. In
Chiang’s SCFG, there is only one nonterminal X,
so a corresponding rule would be

〈 was X(1) by X(2), bei X(2) X(1) 〉

which can also pattern-match the English sen-
tence:

I was [asleep]1 by [sunset]2 .

and translate it into Chinese as a passive voice.
This produces very odd Chinese translation, be-
cause here “was A by B” in the English sentence is
not a passive construction. By contrast, our model
applies rule r3 only if A is a past participle (VBN)
and B is a noun phrase (NP-C). This example also
shows that, one-level SCFG rule, even if informed
by the Treebank as in (Yamada and Knight, 2001),
is not enough to capture a common construction
like this which is five levels deep (from VP to
“by”).

Recent works on dependency-based MT (Lin,
2004; Ding and Palmer, 2005; Quirk et al., 2005)
are closest to this work in the sense that their trans-
lations are also based on source-language parse
trees. The difference is that they use depen-
dency trees instead of constituent trees. Although
they share with this work the basic motivations
and similar speed-up, it is difficult to specify re-
ordering information within dependency elemen-
tary structures, so they either resort to heuris-
tics (Lin) or a separate ordering model for lin-
earization (the other two works). Our approach,
in contrast, explicitly models the re-ordering of
sub-trees within individual transfer rules. In ad-
dition, it is more appropriate to call their models
“(lightweight-) semantics-directed” since depen-
dency structure is closer to the semantic represen-
tation.

3 Extended Tree-to-String Tranducers

In this section, we define the formal machinery
of our recursive transformation model as a spe-
cial case of xRs transducers (Graehl and Knight,
2004) that has only one state, and each rule is
linear (L) and non-deleting (N) with regards to
variables in the source and target sides (hence the
name 1-xRLNs).

Definition 1. A 1-xRLNs transducer is a tuple
(N, Σ, ∆,R) where N is the set of nonterminals,
Σ is the input alphabet, ∆ is the output alphabet,
and R is a set of rules. A rule in R is a tuple
(t, s, φ) where:

1. t is the LHS tree, whose internal nodes are
labeled by nonterminal symbols, and whose
frontier nodes are labeled terminals from Σ
or variables from a set X = {x1, x2, . . .};

2. s ∈ (X ∪∆)∗ is the RHS string;
68

3. φ is a mapping from X to nonterminals N .

We require each variable xi ∈ X occurs exactly
once in t and exactly once in s (linear and non-
deleting).

We denote ρ(t) to be the root symbol of tree
t. When writing these rules, we avoid notational
overhead by introducing a short-hand form from
Galley et al. (2004) that integrates the mapping
into the tree, which is used throughout Section
1. Following TSG terminology (see Figure 1), we
call these “variable nodes” such as x2:NP-C sub-
stitution nodes, since when applying a rule to a
tree, these nodes will be matched with a sub-tree
with the same root symbol.

We also define |X | to be the rank of the rule,
i.e., the number of variables in it. For example,
rules r1 and r3 in Section 1 are both of rank 2. If
a rule has no variable, i.e., it is of rank zero, then
it is called a purely lexical rule, which performs
a phrasal translation as in phrase-based models.
Rule r2, for instance, can be thought of as a phrase
pair 〈the gunman, qiangshou〉.

Informally speaking, a derivation in a trans-
ducer is a sequence of steps converting a source-
language tree into a target-language string, with
each step applying one tranduction rule. However,
it can also be formalized as a tree, following the
notion of derivation-tree in TAG (Joshi and Sch-
abes, 1997):

Definition 2. A derivation d, its source and tar-
get projections, noted E(d) and C(d) respectively,
are recursively defined as follows:

1. If r = (t, s, φ) is a purely lexical rule (φ =
∅), then d = r is a derivation, where E(d) = t

and C(d) = s;

2. If r = (t, s, φ) is a rule, and di is a (sub-)
derivation with the root symbol of its source
projection matches the corresponding substi-
tution node in r, i.e., ρ(E(di)) = φ(xi), then
d = r(d1, . . . , dm) is also a derivation, where
E(d) = [xi 7→ E(di)]t and C(d) = [xi 7→
C(di)]s.

Note that we use a short-hand notation
[xi 7→ yi]t to denote the result of substituting
each xi with yi in t, where xi ranges over all vari-
ables in t.

For example, Figure 3 shows two derivations for
the sentence pair in Example (1). In both cases,
the source projection is the English tree in Fig-

r1

r2 r3

r4 r5

r1

r2 r6

r4 r7

r5

(a) (b)

Figure 3: (a) the derivation in Figure 2; (b) another
derviation producing the same output by replacing
r3 with r6 and r7, which provides another way of
translating the passive construction:
(r6) VP (VBD (was) VP-C (x1:VBN x2:PP)) → x2 x1

(r7) PP (IN (by) x1:NP-C) → bei x1

ure 2 (b), and the target projection is the Chinese
translation.

Galley et al. (2004) presents a linear-time algo-
rithm for automatic extraction of these xRs rules
from a parallel corpora with word-alignment and
parse-trees on the source-side, which will be used
in our experiments in Section 6.

4 Probability Models

4.1 Direct Model

Departing from the conventional noisy-channel
approach of Brown et al. (1993), our basic model
is a direct one:

c∗ = argmax
c

Pr(c | e) (2)

where e is the English input string and c∗ is the
best Chinese translation according to the transla-
tion model Pr(c | e). We now marginalize over all
English parse trees T (e) that yield the sentence e:

Pr(c | e) =
∑

τ∈T (e)

Pr(τ, c | e)

=
∑

τ∈T (e)

Pr(τ | e) Pr(c | τ) (3)

Rather than taking the sum, we pick the best tree
τ∗ and factors the search into two separate steps:
parsing (4) (a well-studied problem) and tree-to-
string translation (5) (Section 5):

τ∗ = argmax
τ∈T (e)

Pr(τ | e) (4)

c∗ = argmax
c

Pr(c | τ∗) (5)

In this sense, our approach can be considered as a
Viterbi approximation of the computationally ex-
pensive joint search using (3) directly. Similarly,

69

we now marginalize over all derivations

D(τ∗) = {d | E(d) = τ ∗}

that translates English tree τ into some Chinese
string and apply the Viterbi approximation again
to search for the best derivation d∗:

c∗ = C(d∗) = C(argmax
d∈D(τ∗)

Pr(d)) (6)

Assuming different rules in a derivation are ap-
plied independently, we approximate Pr(d) as

Pr(d) =
∏

r∈d

Pr(r) (7)

where the probability Pr(r) of the rule r is esti-
mated by conditioning on the root symbol ρ(t(r)):

Pr(r) = Pr(t(r), s(r) | ρ(t(r)))

=
c(r)

∑

r′:ρ(t(r′))=ρ(t(r)) c(r′)
(8)

where c(r) is the count (or frequency) of rule r in
the training data.

4.2 Log-Linear Model

Following Och and Ney (2002), we extend the di-
rect model into a general log-linear framework in
order to incorporate other features:

c∗ = argmax
c

Pr(c | e)α · Pr(c)β · e−λ|c| (9)

where Pr(c) is the language model and e−λ|c| is
the length penalty term based on |c|, the length
of the translation. Parameters α, β, and λ are
the weights of relevant features. Note that posi-
tive λ prefers longer translations, thus we call λ

the length-bonus parameter. We use a standard tri-
gram model for Pr(c).

5 Search Algorithms

We first present a linear-time algorithm for search-
ing the best derivation under the direct model, and
then extend it to the log-linear case by a new vari-
ant of k-best parsing.

5.1 Direct Model: Memoized Recursion

Since our probability model is not based on the
noisy channel, we do not call our search module
a “decoder” as in most statistical MT work. In-
stead, readers who speak English but not Chinese

can view it as an “encoder” (or encryptor), which
corresponds exactly to our direct model.

Given a fixed parse-tree τ ∗, we are to search
for the best derivation with the highest probabil-
ity. This can be done by a simple top-down traver-
sal (or depth-first search) from the root of τ ∗:
at each node η in τ ∗, try each possible rule r

whose English-side pattern t(r) matches the sub-
tree τ∗

η rooted at η, and recursively visit each de-
scendant node ηi in τ∗

η that corresponds to a vari-
able in t(r). We then collect the resulting target-
language strings and plug them into the Chinese-
side s(r) of rule r, getting a translation for the sub-
tree τ∗

η . We finally take the best of all translations.

With the extended LHS of our transducer, there
may be many different rules applicable at one tree
node. For example, consider the VP subtree in
Fig. 2 (c), where both r3 and r6 can apply. As
a result, the number of derivations is exponen-
tial in the size of the tree, since there are expo-
nentially many decompositions of the tree for a
given set of rules. This problem can be solved
by memoization (Cormen et al., 2001): we cache
each subtree that has been visited before, so that
every tree node is visited at most once. This re-
sults in a dynamic programming algorithm that is
guaranteed to run in O(npq) time where n is the
size of the parse tree, p is the maximum number
of rules applicable to one tree node, and q is the
maximum size of an applicable rule. For a given
rule-set, this algorithm runs in time linear to the
length of the input sentence, since p and q are
considered grammar constants, and n is propor-
tional to the input length. The full pseudo-code
is worked out in Algorithm 1. A restricted ver-
sion of this algorithm first appears in compiling
for optimal code generation from expression-trees
(Aho and Johnson, 1976). In computational lin-
guistics, the bottom-up version of this algorithm
resembles the tree parsing algorithm for TSG by
Eisner (2003). Similar algorithms have also been
proposed for dependency-based translation (Lin,
2004; Ding and Palmer, 2005).

5.2 Log-linear Model: rescoring
non-duplicate k-best translations

Under the log-linear model, one still prefers to
search for the globally best derivation d∗:

d∗ = argmax
d∈D(τ∗)

Pr(d)α Pr(C(d))βe−λ|C(d)| (10)

70

Algorithm 1 Top-down Memoized Recursion
1: function TRANSLATE(η)
2: if cache[η] defined then . this sub-tree visited before?
3: return cache[η]

4: best← 0
5: for r ∈ R do . try each rule r

6: matched, sublist← PATTERNMATCH(t(r), η) . tree pattern matching
7: if matched then . if matched, sublist contains a list of matched subtrees
8: prob← Pr(r) . the probability of rule r

9: for ηi ∈ sublist do
10: pi, si ← TRANSLATE(ηi) . recursively solve each sub-problem
11: prob← prob · pi

12: if prob > best then
13: best← prob

14: str ← [xi 7→ si]s(r) . plug in the results

15: cache[η]← best, str . caching the best solution for future use
16: return cache[η] . returns the best string with its prob.

However, integrating the n-gram model Pr(C(d))
with the translation model in the search is compu-
tationally very expensive. As a standard alterna-
tive, rather than aiming at the exact best deriva-
tion, we search for top-k derivations under the
direct model using Algorithm 1, and then rerank
the k-best list with the language model and length
penalty.

Like other instances of dynamic programming,
Algorithm 1 can be viewed as a hypergraph search
problem. To this end, we use an efficient algo-
rithm by Huang and Chiang (2005, Algorithm 3)
that solves the general k-best derivations problem
in monotonic hypergraphs. It consists of a normal
forward phase for the 1-best derivation and a re-
cursive backward phase for the 2nd, 3rd, . . . , kth

derivations.

Unfortunately, different derivations may have
the same yield (a problem called spurious ambi-
guity), due to multi-level LHS of our rules. In
practice, this results in a very small ratio of unique
strings among top-k derivations, while the rescor-
ing approach prefers diversity within the k-best
list. To alleviate this problem, determinization
techniques have been proposed by Mohri and Ri-
ley (2002) for finite-state automata and extended
to tree automata by May and Knight (2006). These
methods eliminate spurious ambiguity by effec-
tively transforming the grammar into an equivalent
deterministic form. However, this transformation
often leads to a blow-up in forest size, which is
exponential in the original size in the worst-case.

So instead of determinization, here we present
a simple-yet-effective extension to the Algorithm
3 of Huang and Chiang (2005) that guarantees to
output unique translated strings:

• keep a hash-table of unique strings at each ver-
tex in the hypergraph
• when asking for the next-best derivation of a

vertex, keep asking until we get a new string,
and then add it into the hash-table

This method should work in general for any
equivalence relation (say, same derived tree) that
can be defined on derivations.

6 Experiments

Our experiments are on English-to-Chinese trans-
lation, the opposite direction to most of the recent
work in SMT. We are not doing the reverse direc-
tion at this time partly due to the lack of a suffi-
ciently good parser for Chinese.

6.1 Data Preparation

Our training set is a Chinese-English parallel cor-
pus with 1.95M aligned sentences (28.3M words
on the English side). We first word-align them by
GIZA++, then parse the English side by a variant
of Collins (1999) parser, and finally apply the rule-
extraction algorithm of Galley et al. (2004). The
resulting rule set has 24.7M xRs rules. We also
use the SRI Language Modeling Toolkit (Stol-
cke, 2002) to train a Chinese trigram model with
Knesser-Ney smoothing on the Chinese side of the
parallel corpus.

71

Table 1: BLEU score results on dev set and test set (1-reference, character-based)

dev set test set (140 sentences)
System BLEU-4 BLEU-4 BLEU-8
Pharaoh (with max-BLEU tuning) 25.96 ±2.8 23.54 ±1.9 6.739 ±1.2

direct model (1-best) 22.10 ±2.6 24.53 ±2.2 7.309 ±1.9

log-linear model (rescoring non-duplicate k-best list)
k = 5000 (β = 0.994, λ = 0.513) 26.01 ±2.7 25.74 ±2.3 8.489 ±2.1

k = 50000 (β = 0.793, λ = 0.469) 26.95 ±2.8 26.69 ±2.4 9.323 ±2.2

Our evaluation data is constructed by inverting
the direction of NIST evaluation data as follows:
we take the 140 short sentences with less than
25 Chinese words from the Xinhua portion of the
NIST 2003 Chinese-to-English evaluation set, and
divide them into dev-set and test-set, each with
70 Chinese sentences. In both sets, we use the
first and second English references of each Chi-
nese sentence as our source input, and the original
Chinese sentences as our single reference. So we
end up with 140 English sentences to translate in
both dev and test sets. Note that this arrangement
makes sure the test set is blind.

6.2 Systems

We implemented our system as follows: for each
input sentence, we first run Algorithm 1, which
returns the 1-best translation and also builds the
derivation forest of all translations for this sen-
tence. Then we extract the top-k non-duplicate
translated strings from this forest using the algo-
rithm in Section 5.2 and rescore them with the tri-
gram model and the length penalty.

We compared our system with a state-of-the-
art phrase-based system Pharaoh (Koehn, 2004)
on the evaluation data. Since the target lan-
guage is Chinese, we will report character-based
BLEU scores instead of word-based to ensure our
results are independent of Chinese tokenizations
(although our language models are word-based).
Feature weights of both systems are tuned for
BLEU-4 (up to 4-grams) on the dev set. For
Pharaoh, we use the standard minimum error-rate
training (Och, 2003) (David Chiang’s implemen-
tation); and for our system, since there are only
two independent features (as we always fix α =
1), we use a simple grid-based line-optimization
along the language-model weight axis. For a given
language-model weight β, we use binary search to
find the best length bonus parameter λ that leads
to a length-ratio closest to 1 against the reference.

6.3 Results and Statistical Significance

The BLEU scores with 95% confidence intervals
are presented in Table 1. On both development
set and test set, rescored translations are signifi-
cantly better than the 1-best results from the di-
rect model, and the larger k is, the better the re-
sult after rescoring. On the test set, our 50000-
best rescoring result has a BLEU score of 26.69,
which is significantly better than Pharaoh’s 23.54
(p < 0.05, using the sign-test suggested by Collins
et al. (2005)). The difference in BLEU-8 scores
is also statistically significant (p < 0.01). These
preliminary experiments show that our approach is
very promising.

7 Conclusion and Future Work

This paper presents an adaptation of the clas-
sic syntax-directed translation with linguistically-
motivated formalisms for statistical MT. Currently
we are investigating efficient algorithms for prin-
cipled integration of n-gram models in the search,
rather than k-best rescoring. Besides, we will
extend this work to translating the top k parse
trees, instead of committing to the 1-best tree, as
parsing errors affect translation quality (Quirk and
Corston-Oliver, 2006).

Acknowledgements

The authors wish to thank Wei Wang, Radu Sori-
cut and Steve Deneefe for help with data and tools.
We are also grateful to David Chiang, Yuan Ding,
Jonathan Graehl, Daniel Marcu, Mitch Marcus,
Bob Moore, Fernando Pereira, Chris Quirk, Gior-
gio Satta and Hao Zhang for helpful discussions.
This work was partially supported by NSF ITR
grants EIA-0205456 and IIS-0428020.

72

References

A. V. Aho and S. C. Johnson. 1976. Optimal code
generation for expression trees. J. ACM, 23(3):488–
501.

Alfred V. Aho and Jeffrey D. Ullman. 1972. The The-
ory of Parsing, Translation, and Compiling, volume
I: Parsing. Prentice Hall, Englewood Cliffs, New
Jersey.

Peter F. Brown, Stephen A. Della Pietra, Vincent J.
Della Pietra, and Robert L. Mercer. 1993. The
mathematics of statistical machine translation: Pa-
rameter estimation. Computational Linguistics,
19:263–311.

Eugene Charniak. 2000. A maximum-entropy-
inspired parser. In Proc. of NAACL, pages 132–139.

David Chiang. 2005. A hierarchical phrase-based
model for statistical machine translation. In Proc.
of the 43rd ACL.

Michael Collins, Philipp Koehn, and Ivona Kucerova.
2005. Clause restructuring for statistical machine
translation. In Proc. of ACL.

Michael Collins. 1999. Head-Driven Statistical Mod-
els for Natural Language Parsing. Ph.D. thesis,
University of Pennsylvania.

Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. 2001. Introduction to
Algorithms. MIT Press, second edition.

Yuan Ding and Martha Palmer. 2005. Machine transla-
tion using probablisitic synchronous dependency in-
sertion grammars. In Proceedings of the 43rd ACL.

Jason Eisner. 2003. Learning non-isomorphic tree
mappings for machine translation. In Proceedings
of ACL (companion volume), pages 205–208.

Heidi J. Fox. 2002. Phrasal cohesion and statistical
machine translation. In In Proc. of EMNLP.

Michel Galley, Mark Hopkins, Kevin Knight, and
Daniel Marcu. 2004. What’s in a translation rule?
In HLT-NAACL.

F. Gécseg and M. Steinby. 1984. Tree Automata.
Akadémiai Kiadó, Budapest.

Jonathan Graehl and Kevin Knight. 2004. Training
tree transducers. In HLT-NAACL, pages 105–112.

Liang Huang and David Chiang. 2005. Better k-best
Parsing. In Proceedings of the Nineth International
Workshop on Parsing Technologies (IWPT-2005), 9-
10 October 2005, Vancouver, Canada.

E. T. Irons. 1961. A syntax-directed compiler for AL-
GOL 60. Comm. ACM, 4(1):51–55.

Aravind Joshi and Yves Schabes. 1997. Tree-
adjoining grammars. In G. Rozenberg and A. Salo-
maa, editors, Handbook of Formal Languages, vol-
ume 3, pages 69 – 124. Springer, Berlin.

Philipp Koehn, Franz Joseph Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Proc.
of HLT-NAACL, pages 127–133.

Philipp Koehn. 2004. Pharaoh: a beam search de-
coder for phrase-based statistical machine transla-
tion models. In Proc. of AMTA, pages 115–124.

Shankar Kumar and William Byrne. 2003. A weighted
finite state transducer implementation of the align-
ment template model for statistical machine transla-
tion. In Proc. of HLT-NAACL, pages 142–149.

P. M. Lewis and R. E. Stearns. 1968. Syntax-directed
transduction. Journal of the ACM, 15(3):465–488.

Dekang Lin. 2004. A path-based transfer model for
machine translation. In Proceedings of the 20th
COLING.

Jonathan May and Kevin Knight. 2006. A better n-
best list: Practical determinization of weighted finite
tree automata. In Proc. of HLT-NAACL 2006.

Mehryar Mohri and Michael Riley. 2002. An effi-
cient algorithm for the n-best-strings problem. In
Proceedings of the International Conference on Spo-
ken Language Processing 2002 (ICSLP ’02), Den-
ver, Colorado, September.

Franz Josef Och and Hermann Ney. 2002. Discrimina-
tive training and maximum entropy models for sta-
tistical machine translation. In Proc. of ACL.

F. J. Och and H. Ney. 2004. The alignment template
approach to statistical machine translation. Compu-
tational Linguistics, 30:417–449.

Franz Och. 2003. Minimum error rate training for sta-
tistical machine translation. In Proc. of ACL.

Chris Quirk and Simon Corston-Oliver. 2006. The im-
pact of parse quality on syntactically-informed sta-
tistical machine translation. In Proc. of EMNLP.

Chris Quirk, Arul Menezes, and Colin Cherry. 2005.
Dependency treelet translation: Syntactically in-
formed phrasal smt. In Proceedings of the 43rd
ACL.

Stuart Shieber and Yves Schabes. 1990. Synchronous
tree-adjoining grammars. In Proc. of COLING,
pages 253–258.

Andrea Stolcke. 2002. Srilm: an extensible language
modeling toolkit. In Proc. of ICSLP.

Dekai Wu. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpora.
Computational Linguistics, 23(3):377–404.

Kenji Yamada and Kevin Knight. 2001. A syntax-
based statistical translation model. In Proc. of ACL.

73

