
Does this answer your Question? Towards Dialogue Management
for Restricted Domain Question Answering Systems

Matthias Denecke and Norihito Yasuda
Communication Science Laboratories

NTT Corporation
Seika-Cho, Hikaridai, Kyoto, Japan

{denecke,n-yasuda}@cslab.kecl.ntt.co.jp

Abstract

The main problem when going from task-
oriented dialogue systems to interactive
restricted-domain question answering sys-
tems is that the lack of task structure pro-
hibits making simplifying assumptions as
in task-oriented dialogue systems. In or-
der to address this issue, we propose a so-
lution that combines representations based
on keywords extracted from the user utter-
ances with machine learning to learn the di-
alogue management function. More specif-
ically, we propose to use Support Vector
Machines to classify the dialogue state con-
taining the extracted keywords in order to
determine the next action to be taken by
the dialogue manager. Much of the content
selection for clarification question usually
found in dialogue managers is moved to an
instance-based generation component. The
proposed method has the advantage that it
does not rely on an explicit representation
of task structure as is necessary for task ori-
ented dialogue systems.

1 Introduction

Question answering is the task of providing natural
language answers to natural language questions us-
ing an information retrieval engine. Due to the un-
restricted nature of the problem, shallow and statis-
tical methods are paramount. Question answering
systems work well in the presence of highly specific
keywords in the queries, but deteriorate in the case
of vague or ambiguous questions.

Dialogue systems address the problem of access-
ing information from a structured database (such as
time table information) or controlling appliances by
voice. Due to the fact that the scope of the appli-
cation defined by the back-end, the domain of the

system is well-defined.1 Therefore, in the presence
of vague, ill-defined or misrecognized input from the
user, dialogue management, relying on the domain
restrictions as given by the application, can interac-
tively request more information from the user until
the users’ intent has been determined.

1.1 Problem addressed in this paper

Restricted domain question answering systems can
be deployed in interactive problem solving solutions,
for example, software trouble shooting. An overview
of potential applications is given in (Minock, 2005).
In these scenarios, interactivity becomes a necessity.
This is because it is highly unlikely that all facts rele-
vant to retrieving the appropriate response are stated
in the query. For example, in the software trouble
shooting task described in (Kiyota et al., 2002), a
frequent system generated information seeking ques-
tion is for the version of the software. Therefore,
there is a need to inquire additional problem rele-
vant information from the user, depending on the
interaction history and the problem to be solved.

In this paper, we address the problem to learn the
function of dialogue management in restricted do-
main question answering systems. Learning such a
function is interesting in the context of task oriented
spoken dialogue managers, because dialogue manage-
ment in the presence of imprecise information, such
confidence scores from recognizers, can be optimized.
However, when applied to restricted domain question
answering systems, learning dialogue management
becomes even more appealing. This is because deci-
sions that are comparatively simple for task-oriented
dialogue systems, such as deciding whether to end
the dialogue, are difficult for interactive restricted
domain question answering systems. The reason for
this is that dialogue management decisions need to
be based on the context, and the retrieval results
from the question answering system only. In other

1This fact poses problems on its own, such as how to
make the user understand the scope of the application.

words, in our situation, we cannot take recourse to a
task structure telling us that all slots are filled, and
the dialogue can be ended.

1.2 Our Approach

Our central idea to dialogue management for re-
stricted domain question answering systems is to de-
fer much of the work to the natural language gen-
eration component. The dialogue manager is only
responsible for choosing one among a set of prede-
fined actions. (The equivalent for a task for a task
oriented dialogue manager would be just to deter-
mine whether to prompt for a new slot filler or to
confirm a filled slot, but without deciding which slot
to prompt or to confirm.) The concrete realization of
the action to be taken is carried out by an instance-
based generation component that modifies example
sentences from that chosen class to the given context
and presents them to the user. The generation com-
ponent is described in detail in Denecke and Tsukada
(2005).

The motivation for our approach is twofold. First,
as discussed in more detail below, the back-end of an
interactive restricted domain question answering sys-
tem provides much less structure than that of a task
oriented dialogue system. This is due to the absence
of database schemata. Therefore, it becomes impos-
sible in our setting to make simplifying assumptions
as can be done in the context of task-oriented dia-
logue systems. Instead, we propose to overcome the
lack of structure primarily by using instance-based
generation, where task-related information is repre-
sented implicitly in the example dialogues based on
which generation takes place.

Second, we need to address the problem of data
sparseness. It is difficult to obtain sufficient data
such that a complex dialogue function can be learned
reliably (see also section 3). For this reason, we in-
tend to reduce the complexity of dialogue manage-
ment, and assign some of the tasks usually performed
by a dialogue manager to the generation component.
The focus of this paper is how best to learn a classi-
fier that chooses the appropriate action.

Since the action to be taken depends both on the
dialogue context and the retrieval results of the ques-
tion answering system, both need to be taken into ac-
count by the learning algorithm. More specifically,
we are interested in learning a function

a = f(c, l)

that, given a dialogue context c and an n-best list of
retrieved documents l, decides an appropriate action
a for the dialogue manager. In particular, we wish
to learn a function that answers the two questions:

1. Does the user need to be prompted for more
information?

2. If so, how should the user be prompted?

We view the problem as a multiclass classification
problem, that is, we attempt to classify the tuple
〈c, l〉 into a set of classes each of which corresponds to
an action. For classification, we use Support Vector
Machines (Vapnik, 1995). We compare the efficacity
of several kernel functions. Levin et al (2000) argue
that supervised learning is not appropriate for opti-
mizing a dialogue strategy. We point out, however,
that our goal is not the optimiztation of a dialogue
strategy. Instead, our goal is to determine whether
the current dialogue context is lacking information,
and if so, how it best can be obtained, given past
experience.

To summarize, our approach can be described as
follows. After processing the current user utterance,
a multi-class classifier assigns one out of a few labels
to the current dialogue state. The label constrains
the form of action to be generated by the dialogue
manager. Subsequently, an instance-based genera-
tion component retrieves an utterance from a corpus
that is similar to the one to be generated. The re-
trievd utterance is adapted to the current context by
replacing content words and presented to the user.

1.3 Our system

We implemented an interactive restricted domain
question answering system that combines features
of question answering systems with those of spoken
dialogue systems. We integrated the following two
features in our system: (1) As in question answer-
ing systems, the system draws its knowledge from a
database of unstructured text. (2) As in spoken dia-
logue systems, the system can interactively query for
more information in the case of vague or ill-defined
user queries.

We address the case of restricted domain systems
by which we mean the restriction of the systems’
scope to one large domain, such as tourism, finance
or the like. Typically, this results in a system that,
from the standpoint of vocabulary size, is located
somewhere between question answering systems and
spoken dialogue systems. It is large enough that do-
main modeling as done in spoken dialogue systems
typically becomes inpractical due to the required
manual labor, but not large enough to answer all
questions one might think of.

We show an overview of our system in figure 1.
In particular, the relationship between the question
answering system and the dialogue manager can be
seen. The user input is passed on to the question

Figure 1: Overview of the system.

answering system which extracts keywords and clas-
sifies the question. The determined information is
integrated with the context and passed on to the in-
formation retrieval engine which returns an n-best
list of newspaper articles that best fit the question.
Subsequently, the dialogue manager needs to deter-
mine whether to present the answer extracted from
the highest ranking document to the user or whether
to inquire additional information from the user.

2 Background

Task-oriented dialogue systems were among the first
commercially available natural language processing
systems. The manageability of task-oriented systems
stems from the fact that natural language processing,
when limited to a specific task, can impose several
simplifying assumptions. Thus, the natural language
processing aspect of it becomes more manageable.

However, the simplifying assumptions are not lim-
ited to the size of grammars or the possibility to use
template based natural language generation. Dia-
logue management proper benefits from the fact that
the purpose of the dialogue is the interaction of the
user with a back-end system with limited functional-
ity. Interactive question answering systems whose
back-end application is a generic information re-
trieval system do not have the benefit of structure
in the way task oriented dialogue systems have.

2.1 Structured and Unstructured
Information for Dialogue Processing

In this section, we point out the ways in which the
structure of the back-end application has been taken
advantage of in dialogue managers. In the follow-
ing section, we discuss diferent approaches how the
first available prototypes of interactive question an-
swering systems try to compensate for the lack of
structure in the back-end application.

Given the nature of the application, database
schemata of SQL databases are one of the most of-
ten used sources of structured information in dia-
logue managers. A database schema can be seen as
a form of type information on the information stored
in databases, much the same as Xml Schema is a
typing scheme for Xml documents. For example,
Ferrieux and Sadek (1994) describe a way to deter-
mine which slots to prompt the user based on the
retrieved records from a database and the schema.
It is the structure of the database, as represented
in the schema, together with the number of poten-
tial fillers, that determines what values to prompt.
Similarly, Denecke and Waibel (1997) propose a data
driven approach to determining which questions to
ask based on the structure of an ontology. The dif-
ference to the work by Ferrieux and Sadek is that
the ontology adds structure to the retrieved record
sets so that cascading follow-up questions, leading
to the filler of only one slot, can be asked. Also, us-
ing subsumption information, potential fillers can be
inferred from the ontology in case database access
is not possible (for example because the result set
is too large). Flycht-Eriksson and Jönsson (2003)
propose to use a domain specific ontology to en-
hance the information contained in free form text.
A different problem was tackled by Rudnicky and
Wu (1999) who introduced task models to dialogue
management. Here, it is the structure of the domain
that guides the sort of questions that are asked. A
task model is a hierarchical representation of tasks
that make up the dialogue. At any point, one task is
active. Depending on the interaction with the user,
the system moves to another task, a subtask, or re-
peats the current task. In all three examples, task
specific structure helps to answer the two questions
outlined in section 1.2.

2.2 Question Answering Systems and
Dialogue Systems

One of the earliest systems in which a free text data-
base could be queried in natural language was pro-
posed by Wilensky et al (1984). The queried text
consisted of the Unix manual pages, and while the
system had limited dialogue capabilities, contextual
information could be processed.

More recently, Kiyota et al (2002) proposed an in-
teractive question answering system that helps users
troubleshoot problems with computer systems. In
case the user does not present all information neces-
sary to determine the correct help text, a dialogue
manager detects vague questions and, if necessary,
prompts the user for additional information. The
prompting is based on so-called dialogue cards which
can be seen as simplified dialogue scripts. If the ques-

System name How to decide Structure
Whether to ask What to ask? How to Generate?
a question?

Dialog Match against list of questions Dialogue cards Dialogue cards Handcoded
Navigator Information gain

(New version)
Hitiqa Conflicts, missing fillers Conflicts, missing fillers Templates? Extracted

in frames, scoring in frames WordNet
Spiqa Scoring Wh question, specializing Templates Extracted

ambiguous phrase

Table 1: Features of implemented interactive open domain question answering systems

tion of the user matches one of a list of questions on
the dialogue card, predetermined information seek-
ing questions associated with the dialogue card are
presented to the user. However, the approach us-
ing dialogue cards cannot be easily extended to an
open-domain interactive question answering system
since the cost of creating the dialogue cards would
be prohibitive.

In an updated version of the system, an informa-
tion gain criterium is proposed to decide which ques-
tion to ask (Misu and Kawahara, 2005). As in the
case of the dialogue cards, a set of pre-prepared ques-
tions is provided.

One approach to determine whether to pursue a
dialogue is to match the question with the retrieved
answer. In case the match is poor, it is assumed
that the information provided by the user is not spe-
cific enough; therefore the system engages in dia-
logue. Matching between questions and answers, al-
beit with a different motivation, is described in Brill
et al (2002). In order to avoid question classifica-
tion, (Brill et al., 2002) proposes to reformulate the
query into a declarative sentence and to rank docu-
ments retrieved by a search engine based on whether
(and how often) a given document contains a sen-
tence with similar structure. The query reformula-
tion takes places en lieu of question classification.

Hori et al (2003) propose an interactive voice ques-
tion answering system in which a list of information
seeking questions is hypothesized for each user input.
The information seeking questions are generated by
using templates in which chunks of the user ques-
tion are inserted. The template depends on the type
of the question as determined by the question an-
swering system. For each hypothesized question, an
ambiguity score is calculated. This score depends on
the result set and the phrase inserted in the tem-
plate. If there is a disambiguation question with a
score higher than a given threshold, the question is
asked; otherwise the answer is generated.

In order to increase the structure of the documents
returned from the question answering system, Small
et al (2004) propose to extract information using var-

ious means from the retrieved documents. The ex-
tracted information is then represented in frame-like
structures which allows the application of methods
known from task-oriented dialogue management.

The work on interactive question answering sys-
tems cited above and proposed here is different from
the work proposed in DeBoni and Manadhar (2003)
in that here, the authors are interested in detecting
whether a question from a user is a follow-up ques-
tion to a previous question or not. This contrasts
with our desire to determine the need for system
initiated clarification dialogues and the generation
thereof. Of course, from an interaction perspective,
the differences in approaches result in different de-
grees of system initiative, but the underlying tech-
nologies are also different.

2.3 Support Vector Machines

In recent years, Support Vector Machines have been
applied successfully in several pattern recognition ap-
plications (Vapnik, 1995). Their popularity is due
to the fact that they can be applied in high dimen-
sional feature spaces without actually incurring the
high cost of explicitly computing the feature map.
Support Vector Machines are instances of supervised
learning algorithms. A supervised learning algorithm
attempts to learn a decision function f : X → Y from
labeled examples {(x1, y1), . . . , (xn, yn)}. In the case
of Support Vector Machines, we have Y = {−1, +1}.

Given a set of labeled training examples, a Sup-
port Vector Machine attempts to determine hyper-
planes separating the positive from the negative ex-
amples such that the margin between the classes is
maximized. In order to improve classification per-
formance, the training examples are separated not
in the input space but in some high-dimensional fea-
ture space. The reason this can be done efficiently
is that instead of determining the image φ(xi) of the
training examples in the feature space and calculat-
ing their inner product 〈φ(xi), φ(xj)〉 there, the dis-
tance is calculated implicitly by the Kernel function
K(xi,xj) = 〈φ(xi), φ(xj)〉.

2.3.1 Multi-Class Classification

As described in section 1.2, we would like to clas-
sify the dialogue and the user input into one out of
n several classes. The classification is used to deter-
mine what kind of output to the user is to be gen-
erated. Section 3 gives an overview how the number
and meaning of the classes is determined.

However, standard Support Vector Machines pro-
vide only binary classification. There are several
proposals how to do multi-class classification using
Support Vector Machines. One-vs-all classification
is a simple approach in which one binary classifier is
trained separately for each class, whereby the mem-
bers of that class are given as positive examples and
members of all other classes are given as negative ex-
amples. During classification, each binary classifier
output a distance of the input to the closest decision
boundary. This distance can be used as an indicator
”how sure” the classifier is about the classification.
Therefore, the classifier outputting the largest pos-
itive number wins, and determines the class of the
input.

An alternative is to follow the approach of Weston
and Watkins (1999), where a form of voting takes
place during classification.

2.3.2 Convolution Kernels

Initially, kernel-based learning algorithms have
been applied to various tasks in attribute-value learn-
ing in which attributes are represented as compo-
nents xi vector x. This approach does not scale
well to domains such as natural language processing
in which the representation of structure is necessary
in order to achieve good classification performance.
While Bag-of-Words techniques can be employed as
an approximation to derive features for classifiers,
the loss of structure is not desirable. To address
this problem, Haussler (1999) proposed Convolution
Kernels that are capable of processing structured ob-
jects x and y consisting of components x1, . . . , xm

and y1, . . . , yn. The convolution kernel of x and y is
given by the sum of the products of the components’
convolution kernels. This approach can be applied to
structured obejct of various kinds, and results have
been reported for string kernels and tree kernels.

The idea behind Convolution Kernels is that the
kernel of two structures is defined as the sum of the
kernels of their parts. Formally, let D be a positive
integer and X,X1, . . . , XD separable metric spaces.
Furthermore, let x and y be two structured objects,
and x = x1, . . . , xD and y = y1, . . . , yD their parts.
The relation R ⊆ X1× . . .×XD×X holds for x and
x if x are the parts of x. The inverse R−1 maps each
structured object onto its parts, i.e. R−1(x) = {x :
R(x, x)}. Then the kernel of x and y is given by the

Figure 2: An example.

following generalized convolution:

K(x, y) =
∑

x∈R−1(x)

∑

y∈R−1(y)

D∏

d=1

Kd(xd, yd)

Informally, the value of a convolution kernel for
two objects X and Y is given by the sum of the
kernel value for each of the substructures, i.e. their
convolution.

Collins and Duffy (2001) described the applica-
tion of Convolution Kernels to several natural lan-
guage processing tasks, focussing on the case where
the substructures convoluted by the kernel are trees.

Suzuki et al (2003) proposed Hierarchical Directed
Acyclic Graph kernels in which the substructures
contain nodes which can contain graphs themselves.
The hierarchy of graphs allows extended informa-
tion from multiple components to be represented and
used in classification. In addition, nodes may be
annotated with attributes, such as part of speech
tags, in order to add information. For example, in
a Question-Answering system, components such as
Named Entity Extraction, Question Classification,
Chunking and so on may each add to the graph. Fig-
ure 2 shows the graph structure of a sentence after
having been preprocessed; this graph structure is the
structure that is processed by the Hdag kernel.

The way to arrive at the graph structures (and
that we follow) is to subject each sentence to an ex-
tensive analysis. Since in Japanese, words are not
separated by spaces, the input sentence is broken
in words and analyzed morphologically by Chasen
(Asahara and Matsumoto, 2000). Based on this
analysis, chunking is done using CaboCha (Kudo
and Matsumoto, 2002). Each node with which a
word stem is associated with semantic information
extracted from ”Goi-Taikei” (Ikehara et al., 1997) a
semantic network similar to the English WordNet.

3 Corpus

We collected a corpus for our instance based gener-
ation system as follows. We set up communications

between a wizard and users. The wizard was in-
structed to ”act like the system” we intend to build,
that is, she was required to interact with the user ei-
ther by prompting for more information or give the
user the information she thought he wanted.

3.1 Data Collection

The subjects were instructed to ask travel-related
questions. The questions the subjects were in-
structed to ask comprise what kind of accommoda-
tion is available, if the destination is known for spe-
cial food (various areas in Japan are renowned for
food that can be had only there), famous sightsee-
ing spots and events, if the destination is important
for the history of Japan, and if so, how. The re-
striction of the kind of questions was motivated by
the fact that certain kinds of questions are not well
suited for interactive restricted domain question an-
swering systems. In particular, simple factual ques-
tions (such as: ”How much is a stay in the hotel for
three nights?”) are better handled by task oriented
dialogue systems, a problem we did not want to ad-
dress in this study. Altogether, 20 users participated
in the data collection effort. The participating users
were no computer experts, and did not participate
in similar resarch experiments before.

3.2 Corpus Properties

Each of the 20 users contributed 8 to 15 dialogues.
The length of the dialogues varies between 11 and
84 turns, the median being 34 turns. Altogether, the
corpus consists of 201 dialogues. The corpus consists
of 6785 turns, 3299 of which are user turns and the
remaining 3486 are wizard turns. Due to the strict
dialogue regiment prescribed in the onset of the data
collection, each dialogue consists either of an equal
number of user and wizard turns (in case the user
ends the dialogue; 14 cases) or one wizard turn more
than user turn in case the wizard ends the dialogue
(187 cases). Figure 3 shows the first part of a dia-
logue from the corpus.

Due to the nature of the Japanese language, phe-
nomena interesting to dialogue processing, such as
ellipsis and anaphora, are mostly realized through
omission (implicit contextual understanding is often
required in Japanese). Due to the strict regimen
in which the data was collected, misunderstandings
were rare, and corrections did not occur often.

3.3 Corpus Annotation

We recall from section 1.3 that the purpose of the
system-generated questions is to integrate additional
information from the user in the information re-
trieval. The corpus contains questions with differing
specificity. For generation purposes, it is necessary

to control the degree of vagueness. Therefore, we
annotate the corpus accordingly. To do that, each
dialogue is divided in utterance pairs. Each utter-
ance pair contains a user turn followed by a wizard
turn. Each utterance pair is manually classified into
one out of 8 classes according to the following schema
(ut and wt refer to user utterance and wizard utter-
ance, respectively):

if (wt is not question)
if (ut is yes/no question) assign 1
else if (ut is enumeration question) assign 2
else if (ut is wh question) assign 3
else assign 4

else
if (wt is yes/no question) assign 5
else if (wt is enumeration question) assign 6
else if (wt is wh question) assign 7
else assign 8

After annotation we found that the distribution
of labels is extremely skewed. For that reason, we
merged classes 2 and 3, and classes 6 and 7, respec-
tively. Moreover, we removed instances of classes 4
and 8 from the corpus. The raw and clean counts of
the classes in the dialogue corpus are distributed as
follows.

Label 1 2 3 4 5 6 7 8

Raw 530 2 2209 3 454 23 76 2
Clean 530 2211 0 454 99 0

4 Representations and Dialogue
Management

Before we discuss our choice of kernel functions, we
detail the function f we would like to learn. The
representations to be classified need to capture two
aspects of the dialogue state: (1) how specific is the
information gathered so far, and (2) how well does
the highest ranking document from the current n-
best list answer the users’ question? The first aspect
is expressed by the context representation, the sec-
ond by the relationship between the gathered infor-
mation and the highest-ranking document in the n-
best list. This is the motivation behind modeling the
dialogue manager as a classifier a = f(c, l) in which
the dialogue context c (including the last utterance
of the user) and the document n-best list l supplied
by the information retrieval engine determines the
action a to be taken by the dialogue manager.

In the following sections, we describe how features
for the representation of context c and the answer
list l are extracted.

Figure 3: An extract from the dialogue corpus used. The letter ’U’ identifies user utterances, the letter ’W’
identifies wizard utterances.

4.1 Context Representation

We choose a simple discourse representation in which
the user turns as well as information extracted from
them are stored. More specifically, we memorize
the user turn utT at time T , the set of keywords
kw(utT) extracted from utT by the question analy-
sis module and the question type qt(utT) deter-
mined by the question classifier. At time T , we also
have access to an n-best list of newspaper articles
AT = 〈a1

T , . . . , an
T 〉 which are returned from the ques-

tion answering system.
The dialogue state at time T is then given by the

three lists 〈ut1, . . . , utt〉, 〈kw(ut1), . . . , kw(utT)〉 and
〈A1, . . . , AT 〉. A dialogue state contains too much
information to be used directly for classification pur-
poses. We discuss several ways of extracting features
relevant for classification in the following sections.

User input and context in spoken dialogue systems
is often represented as fillers of a predefined set of
slots. A straightforward adaptation to interactive
restricted domain question answering systems is not
straightforward, because it is difficult to determine
the set of slots necessary for the application at hand.
Since we intend to use the representations for classi-
fication purpose, we propose a bag-of-word approach
that is often used in kernel-based methods.

4.1.1 Pure Context
While in task oriented dialogue systems, the repre-

sentation of context is an accumulation of slot-filler
part of some form, we cannot resort to this tech-
nique, because a predefined set of slots is not given.
Therefore, we propose to generalize slot-filler repre-
sentations such that the information relevant to the
information retrieval process is memorized. We ar-

rive at a bag-of-word representation of a sentence by
tokenizing and tagging the sentence (Japanese does
not use space between the words). Then, all con-
tent words are added to the bag-of-words. However,
the chosen content words may be too specific or too
vague for classification purposes. For that reason, we
add all hypoernyms of all present nouns to the set.

In other words, our first proposal for context rep-
resentation at time T is given by

CT = Cl

(
T⋃

t=1

kw(utt)

)
(1)

where Cl is the closure function mapping a set of
words to a larger set that also contains all hyper-
nyms. Informally, this is the set of all key words
extracted from the user utterances up until now, aug-
mented by the closure of concepts to include hyper-
nyms.

4.1.2 Filtered through results
In information retrieval systems using large cor-

pora co-occurence between terms is used as an ad-
ditional source of information. In other words, the
fact that two terms appear in the same documents
more often than chance is used to address problems
such as synonyms. When representing the context
for classification, we would like to take advantage of
this concept as well. We can do this in an indirect
way by extracting relevant terms from the retrieved
documents and add them to our context represen-
tation. This can be done as follows. Let N be the
set of all nouns occurring in the dialogue training
corpus. Furthermore, the document a1

T refers to the
highest ranking newspaper article retrieved at time

T . An approximation of those nouns in the docu-
ment relevant to the travel domain can be given by
the intersection of the set of all nouns in the doc-
ument with the set N . This leads to the following
equation.

CT = Cl

(
T⋃

t=1

kw(utt) ∩N ∩ Cl(a1
T)

)
(2)

4.2 Answer Representation

In addition to a representation of the context, it
is possible to represent the degree to which the re-
trieved documents answer the question asked by the
user. We assume that this feature can be expressed
by a relationship between the representation of the
context and the retrieved documents.

4.2.1 Content Word Intersection
A straightforward approach to extract a relation-

ship between the informational content in the con-
text and in the retrieved document is to determine
bag-of-words representations for each and calculate
the intersection:

AT = Cl

(⋃
t

kw(utt) ∩ answer(a1
T)

)
(3)

where answer is a function that takes a document
and extracts the sentence that (according to the
question answering system) constitutes the answer
to the users’ question.

4.2.2 Alignment
A potential drawback to the bag-of-words repre-

sentation described in section 4.2.1 is the loss of infor-
mation that occurs as sentence structure is ignored.
For this reason, our second approach is to determine
an alignment between the user input sentence and
the answer sentence extracted from the document.
Figure 6 illustrates this idea by means of a toy ex-
ample. This approach is motivated by the work by
Brill et al (2002) described above. The detailed al-
gorithm that determines the alignment is described
in Appendix A.

In contrast to the features extracted in sections
4.1.1, 4.1.2 and 4.2.1, we cannot use a standard ker-
nel to classify the extracted structure. Instead, we
use the Hierarchical Directed Acyclic Graph kernel
described in section 2.3.2 for classification purposes.

5 Dialogue Management

After having discussed the choice of representations,
we proceed to describe dialogue management based
on the representations. We recall from the introduc-
tion that our approach to dialogue management is

to classify the dialogue state such that the resulting
class is an indicator of the kind of action to be taken.
The responsibility for carrying out the chosen action
lies entirely with the generation component. Gen-
eration is an instance-based approach which takes
sentences from the corpus and adapts them to the
current dialogue situation as necessary. Examples
for dialogues between inexperienced users and the
system are shown in appendix A.

5.1 Classifiers and Kernels

For our experiments with binary classifiers, we use
TinySVM as classifier, which is an implementa-
tion of Platt’s fast SMO optimization algorithm. To
choose the winning class, we use one-vs-all classifi-
cation. For our experiments using multiclass classi-
fication, we use an implementation of the classifier
described in (Weston and Watkins, 1999).

5.2 Instance-Based Generation

Given a query q asked by the user, and an answer
n-best list 〈a1, . . . , an〉 generated by the question
answering system, the classifier determines for each
alignment A(q, ai) whether ai is an answer candidate
for q, and if so, the answer is added to the content
for the information seeking question.

Another important question, not discussed in this
paper, is how to turn the action a as determined
by the classifier, into an acceptable utterance. Cur-
rently, we are pursuing an approach of instance-
based generation, where appropriate sentences are
selected from the dialogue corpus, adapted to the
current context where necessary, and presented to
the user. Details on the instance-based approach can
be found in (Denecke and Tsukada, 2005). In short,
the instance-based method for information seeking
question generation works as follows. A dialogue
with ”similar context” is retrieved from the exam-
ple corpus, the information-seeking question follow-
ing the ”similar context” is chosen, the content words
in this question are determined and exchanged with
content words from the current corpus, and the ques-
tion is presented to the user.

5.3 Dialogue Management Algorithm

The dialogue management algorithm can be summa-
rized as follows.

Input User query
OutputClarification question or answer

1 Perform standard question classification
and keyword extraction on user query

2 Add extracted features to dialogue context
Add hypernyms to dialogue context

3 Perform standard IR using result of 1)

Add retrieved documents to dialogue context
4 Classify dialogue context to obtain action type

5 Retrieve user utterance from dialogue corpus
similar to current situation

6 Adapt wizard utterance directly following
user utterance to current situation

6 Evaluation

We combine the proposed representations proposed
in sections 4.1.1, 4.1.2, 4.2.1 and 4.2.2 to obtain
four different representations. In order to combine
the features for context and answers, we distinguish
whether the second kernel is a polynomial kernel
(section 4.2.1) or a graph kernel (section 4.2.2). In
the first case, we join the features for context and
answers, taking care that the feature identifiers are
distinct. In the second case, we create create a new
graph node in the hierarchical graph representation
and add all context features in this node.

6.1 The Question Anwering System

For our experiments, we used the Japanese question
answering system Saiqa (Sasaki, 2002) as the build-
ing block. The text resources the system accesses
are the complete documents of the Mainichi Shin-
bun dating from 1991 to 2002.

6.2 Methodology

We used a training set consisting of 151 dialogues
to train the four different versions of Support Vector
Machines. This is a 4 class classification problem; we
used the cleaned version of the corpus. The Support
Vector Machines were then used to predict the labels
of the unseen corpus. In each case, we trained 4
classifiers, each singling out one of the four classes
(one-against-all). The parameter C was set 1 in all
experiments.

It should be noted that the purpose of this ex-
periment is to determine an appropriate classifier for
dialogue management to be used in a user study.

6.3 Results

The results of the four classifiers are shown in table 2.
It can be shown that the context feature extraction
according to equation (2) combined with the answer
feature extraction according to equation (3) works
best. We believe the structured alignment does not
work better because the alignment is between one
user utterance and one sentence in the retrieved doc-
ument. In order to work well, more context should
have been taken into account.

We also tried radial and neural kernels instead of
the polynomial kernel, but found problems with both

Context
Answers Equ (1) Equ (2)
One-vs-all Equ (3) 76.3% 75.3%
Multiclass (Equ (3) 84.2% 80.4%
Alignment 62.2% 61.4%

Table 2: Accuracy of the classifiers

of them. The radial basis kernels showed excellent
accuracy and precision, but had recall below 30 %
for underrepresented classes. The training of SVMs
with neural kernels would not converge, even when
setting the parameter C to unusually large values.

In initial experiments, we tried to classify the
structures resulting from the alignments as shown
in figures 6 and 7. While the performance on the
training set was around 90 percent, performance on
previously unseen data was not much better than
chance. This suggests that generalization could not
take place. We hypothesize that this is due to the
fact that the number of nodes and edges in the lin-
guistic structures of question and answer outweighs
the number of nodes and edges of the alignment. In
other words, we suspect that overfitting occurs, and
therefore the classifier does not generalize well. One
way to overcome this problem is to remove some
of the information from the alignment structures.
We do this by removing all word related informa-
tion, such as part of speech tag and semantic in-
formation. Yet, the simpler bag-of-word (or bag-of-
concept, more appropriately)approach still outper-
forms the structured approach.

7 Discussion and Future Work

In this paper, we presented dialogue management
techniques for interactive restrictive domain question
answering systems. We proposed to learn classifiers
for dialogue management based on representations
extracted from dialogue context and retrieved docu-
ments from the question answering machines.

The main problem when going from task-oriented
dialogue systems to interactive restricted-domain
question answering systems is that the lack of task
structure prohibits making simplifying assumptions
as in task-oriented dialogue systems. In order to ad-
dress this issue, we proposed a solution that con-
sists of two parts: First, we use representations based
on keywords extracted from the user utterances and
concepts extracted from an ontology. These rep-
resentations can be seen as a generalization of the
slot/filler representations Future work includes eval-
uation with new users as opposed to trying to predict
the actions in an existing dialogue corpus. Second,
we use machine learning to learn the dialogue man-

agement function. We are currently preparing an
evaluation with users to test the dialogue classifica-
tion under realistic circumstances.

Acknowledgements

We would like to thank Takuya Suzuki for imple-
menting parts of the instance-based generation sys-
tem. Our thanks go to Hideki Isozaki and the mem-
bers of the Knowledge Processing Group for discus-
sions and support.

References

M. Asahara and Y. Matsumoto. 2000. Extended
Models and Tools for High-Performance Part-of-
Speech Tagger. In Proceedings of The 18th In-
ternational Conference on Computational Linguis-
tics, Coling 2000, Saarbrücken, Germany.

M. De Boni and S. Manandhar. 2003. An analy-
sis of clarification dialogue for question answering.
In Proceedings of HLT-NAACL 2003, Edmonton,
Canada.

E. Brill, J. Lin, M. Banko, S. Dumais, and A. Ng.
2002. Data-Intensive Question Answering.

M. Collins and N. Duffy. 2001. Convolution Kernels
in Natural Language Processing.

M. Denecke and H. Tsukada. 2005. Instance-
Based Generation for Interactive Restricted-
Domain Question-Answering Systems. In Proceed-
ings of the 2nd International Joint Conference on
Natual Language Processing. Springer Verlag.

M. Denecke and A.H. Waibel. 1997. Dia-
logue Strategies Guiding Users to their
Communicative Goals. In Proceedings of
Eurospeech, Rhodos, Greece. Available at
http://www.opendialog.org/info papers.html.

A. Ferrieux and M.D.Sadek. 1994. An Efficient
Data-Driven Model for Cooperative Spoken Dia-
logue. In Proceedings of the International Confer-
ence on Spoken Language Processing, Yokohama,
Japan, pages 979 – 982.

A. Flycht-Eriksson and A. Jönsson. 2003. Some
empirical Findings on Dialogue Management and
Domain Ontologies in Dialogue Systems - Implica-
tions from an Evaluation of Birdquest. In Proceed-
ings of the 4th SigDial Workshop on Discourse
and Dialogue, Sapporo.

D. Haussler. 1999. Convolution kernels on discrete
structures. Technical report, UC Santa Cruz.

C. Hori, T. Hori, H. Tsukada, H. Isozaki, Y. Sasaki,
and E. Maeda. 2003. Spoken interactive odqa sys-
tem: Spiqa. In Proc. of the 41th Annual Meet-
ing of Association for Computational Linguistics
(ACL-2003), Sapporo, Japan.

S. Ikehara, M. Miyazaki, S. Shirai, A. Yokoo,
H. Nakaiwa, K. Ogura, Y. Oyama, and Y. Hayashi.
1997. The Semantic Attribute System, Goi-Taikei
? A Japanese Lexicon, Volume 1 (in Japanese).
Iwanami Publishing.

K. Kiyota, S. Kurohashi, and F. Kido. 2002. ”dialog
navigator”: A question answering system based on
large text knowledge base. In Proceedings of The
19th International Conference on Computational
Linguistics, Coling 2002,Taipei, Taiwan.

T. Kudo and Y. Matsumoto. 2002. Japanese de-
pendency analysis using cascaded chunking. In
CoNLL 2002: Proceedings of the 6th Conference
on Natural Language Learning 2002 (COLING
2002 Post-Conference Workshops), pages 63–69.

E. Levin, R. Pieraccini, and W. Eckert. 2000. A
Stochastic Model of Human Machine Interaction
for Learning Dialog Strategies. IEEE Transactions
on Speech and Audio Processing, 8:11–23.

M. Minock. 2005. Where are the ’Killer Applica-
tions’ of Restricted Domain Question Answering?
In Workshop on Knowledge and Reasoning for An-
swering Questions, Edinburgh.

T. Misu and T. Kawahara. 2005. Dialogue Strategy
to Clarify Users Queries for Document Retrieval
System with Speech Interface. In Proceedings of
Interspeech 2005 (Eurospeech), Lisbon.

A. Rudnicky and X. Wu. 1999. An agenda-based
Dialog Management Architecture for Spoken Lan-
guage Systems. In Proceedings of the Workshop on
Automatic Speech Recognition and Understanding.

Y. Sasaki. 2002. Ntt’s qa systems for ntcir qac-1.
In Working Notes of the Third NTCIR Workshop
Meeting, pages 63–70.

S. Small and T. Strzalkowski. 2004. Hitiqa: Towards
analytical question answering. In Proceedings of
The 20th International Conference on Computa-
tional Linguistics, Coling 2004,Geneva Switzer-
land.

J. Suzuki, T. Hirao, Y. Sasaki, and E. Maeda. 2003.
Hierarchical directed acyclic graph kernel: Meth-
ods for structured natural language data. In Proc.
of the 41th Annual Meeting of Association for
Computational Linguistics (ACL-2003), Sapporo,
Japan, pages 32–39.

V. N. Vapnik. 1995. The Nature of Statistical Learn-
ing Theory. Springer.

J. Weston and C. Watkins. 1999. Support vector
machines for multi-class pattern recognition. In
Proceedings ofthe Seventh European Symposium on
Artificial Neural Networks.

Robert Wilensky, Yigal Arens, and David Chin.
1984. Talking to unix in english: an overview of
uc. Communications of the ACM, 27(6):574–593.

A An Example Dialogue

The following example dialogue transcript was ob-
tained during a user study with a user that had not
used the system before.

Figure 4: Example dialogue. The words replaced
by the instance-based generation are highlighted in
grey.

B Alignment Algorithm

The purpose of our work is to build a classifier that
determines whether the sentence shown in figure 5
(b) is an answer to the query shown in figure 5 (a).
In other words, we are interested in classifying the
relation between sentence 5 (a) to sentence 5 (b).
Therefore, we need to add structure to 5 (a),(b) that
makes explicit the relationship between the depen-
dency structures. We do this by aligning the depen-
dency trees for the question and the answer with each
other. Then, we form a graph consisting of the de-
pendency tree of the question, the dependency tree
of the answer and the edges representing the align-
ment. In the following, we refer to the surface form
of the question and answer as q and a, respectively,
their dependency trees as t(q) and t(a), and a possi-
ble alignment of t(q) with t(a) as A(q, a).

An example of one possible alignment for the
structure resulting from the alignment of the ques-
tion and answer shown in figure 5 is shown in figure
6. The resulting structure is classified using the Hier-
archical Directed Acyclic Graph Kernel; counting as
a positive example if the presented answer is indeed
the correct answer to the question and as a nega-
tive example if not. In the following, we present the
preprocessing before the alignment and propose two
different ways to perform the alignment.

B.1 Preprocessing

Before the alignment can take place, we need to per-
form some preprocessing in order to address the dif-

Figure 5: Analysis

ferences between question and answer. We are pri-
marily concerned with two issues. First, we need to
address the fact that nodes containing the question
word (such as who, what, where and so on) need to be
treated differently. We do this as follows. From the
training corpus, we associate with each question type
the used question words. Then, in order to identify
the node containing the question word in the depen-
dency tree of the question, we determine the nodes
that are associated with a word in the list.

B.2 Detailed Alignment

The detailed alignment is an attempt at aligning as
many nodes as possible in t(q) with nodes in t(a). In
order to abstract away the particular realization of
question and answer, we do not consider nodes whose
part of speech tag is not a noun, verb, adjective or
adverb. In the following we refer to a node from the
question or answer dependency tree as nq, and na,
respectively. The i-th attribute of a node n is indi-
cated by attrn(i). The part of speech of n is notated
as pos(n). The i node in contained in n can be ac-
cessed by node(n, i). We distinguish between word
and chunk nodes. A word node is a node containing
a word appearing in the surface form of the question
or answer, but does not contain other words. Exam-
ples for word nodes include the nodes labeled with
the words ’Nariko’ or ’book’ in figure 5. A chunk
node is a node containing other nodes. Chunk nodes
are shown as square boxes in figure 5. We are inter-
ested in determining the value V (nq, na) of aligning
node nq with node na. We distinguish three cases:
the value of the alignment if both nodes are word
nodes, the value of the alignment if both nodes are
chunk nodes, and the remaining case. A value of
V (nq, na) = −1 represents the fact that nq and na

are not aligned.

B.2.1 Value of Aligning two Word Nodes
We first consider in which both nq and na contain

the representation of a word. The nodes carry infor-
mation on the surface string, the uninflected word,
the part of speech, and semantic tag. The value of
the alignment between two word nodes is given by
the number of attributes contained in the question
node that are also contained in the answer node.
This characteristic is intended to capture the fact
that information present in the answer but not in
the question does not hurt the association, while the
other round it does.

V (nq, na) =
{ |{i : attrnq (i) = attrna(i)}| if pos(nq) ∈ list
−1 otherwise

B.2.2 Value of Aligning two Chunk Nodes
A chunk node contains references to word nodes,

and, since the graphs are hierarchical, other chunk
nodes. For alignment purposes, we consider a chunk
node a set of nodes. We do not take those word
nodes into account. Given two chunk nodes, the cost
of associating between them is calculated recursively
according to

V (nq, na) = max
π∈Π(s)

∑

j

V (node(nq, j), node(na, π(j)))

where Π(s) is the set of all permutations of {1, . . . , s}
and s is the number of nodes contained in nq.

The value V (nq, na) equals 0 if one node is a word
node while the other is a chunk node.

Dynamic programming is used to determine a min-
imal association between the structures of the query
and the potential. A solution to the example sen-
tences from figure 5 is shown in figure 6. Once the
alignment has been determined, the edges 〈nq, na〉
for which V (nq, na) > 0 are added to the graph. In
addition, each node n in t(q) that is not aligned with
some node in t(a), we add a new node n′ and align
n with n′. The resulting structure is shown in figure
6.

B.3 Sloppy Alignment

Sloppy alignment is identical to detailed alignment
except that after alignment only those edges 〈nq, na〉
for which V (nq, na) > 0) such that nq is a chunk
node are added to the graph. Figure 7 shows the
sloppy alignment.

B.4 Thinning

In order to avoid memorization, we remove features
from the graph structures. We propose to thin out
the graph and make the alignment structure more
visible. The resulting graph of the example is shown
in figure 8.

Figure 6: One possible alignment of the dependency
trees shown in figure 5. The alignment of the chunk
nodes is not shown for clarity, but is added to the
graph as well.

Figure 7: One possible alignment of the dependency
trees shown in figure 5.

Figure 8: Alignment shown in figure 7 after thinning.

