
REGULAR APPROXIMATIONS OF CFLS : A
GRAMMATICAL VIEW

Mark-Jan Nederhof

Dept . of Hu1nanities Co1nputing, University of Groningen

P.O . Box 716 , NL-9700 AS Groningen , The Netherlands Email : markjan@let . rug .nl
Abstract

Vve show that for each context-free grammar a new grammar can be constructed that generates a regular
language. This construction differs from existing methods of approximation in that use of a pushdown automaton
is avoided . This allows better insight into how the generated language is affected. The new method is also more
attractive from a computational viewpoint. .

1 Introduction In [Pereira and \Vright , 1991] a method was presented that allows the construction of a . finite automaton from a. context-free grammar . The (regular) language accepted by the finite automaton includes the strings generated by the original context-free grammar , plus a. set of additional strings . In this sense , the context-free grammar is approximated by the finite automaton . As intermediate result , an LR automaton is constructed from the context-free grammar . LR automata, which are special cases of pushdown automata , are representations of context-free languages. If one eliminates the pushdov-m stack of an LR automaton save the top-most element, a finite automaton results. For obtaining a better approximation , this stage can be preceded by encoding into stack symbols some bounded a.mount of information concerning the stack lying underneath ; this information is given by a shorter stack resulting from omitting parts between multiple occurrences of LR states . This process is called 'Unfolding. In the context of error handling for programming languages , the approach from [Pereira and Wright , 1991] , without the concept of unfolding, has been conceived independently by [Heckert , 1 994] . Some aspects of this method have however not been clarified : • \iVhy are LR automata. used , as opposed t o any other kind o f pushdown automaton? (See for example [Nederhof, 1 994b] for a. whole range of different kinds of pushdown automaton .) • \Vhat happens to the language in the approximating process? The second issue is partly a. consequence of the first issue: the structure of a. grammar and the structure of the corresponding LR automaton are two very different things, and how modifications to the automaton affect the language in terms of the grammar may be difficult to see . In this paper, we will somewhat clarify these two issues . Concerning the first issue , we simply state that any kind of pushdown automaton constructed from a grammar allows a. finite automaton to be derived that represents a regular approximation of the original language ; in other words, LR automata. do not have any special properties in this respect . However , in this communication , we will avoid the use of pushdown automata altogether , and perform the process of approximation on the level of the context-free grammar. This also helps to clarify the second issue above , viz . how to monitor the approximating process. Our method is the fol lowing. We define a condition on context-free grammars that is a sufficient condition for a grammar to generate a. regular language. We then give a. transformation that turns an arbitrary grammar into another grammar that satisfies this condition . This transformation is obviously not language-preserving ; it adds strings to the language generated by the original grammar , in such a way that the language becomes regular . 1 59

S -.:, (S * S)
S -.:, (S' + S)
s - o

(a)

, , '§ '.

�
(D ,/s , ,/c* s))

� \
CD /s / C+ s) J o

: I : I I
I I

\ o / o
' - ,

(b)

Figure 1 : (a) two spines in a parse tree , (b) the grammar symbols to the left and right of a spine immediately
dominated by nodes on the spine .

The structure of the paper is as fol lows . In Section 2 we recall some standard definitions from language
theory. Section 3 investigates a sufficient condition for a context-free grammar to generate a regular language .

A1i algorithm to transform a grammar such that this condition is satisfied is given in Section 4. As Section 5
shows, some aspects of our method are undecidable. A refinement of the approach for obtaining more precise
approximations is presented in Section 6. Section 7 compares the new method to existing methods.

2 Prelhninaries
A context-free grammar G is a 4-tuple (E, N, P, S) , where E and N are two finite disjoint sets of terminal and
nonterminal symbols, respectively, S' E N is the start symbol , and P is a. finite set of rules . Ea.eh rule has the
form A - a with A E N and a E V* , where V denotes N U E. The relation - on N x V* is extended to a.
relation on V* x V* as usual. The transitive and reflexive closure of -.:, is denoted by -* .

The language generated by a context-free grammar is given by the set { w E E* I S -* w} . By definition ,
such a set is a context-free language. By reduction of a grammar we mean the elimination from P of all rules
A - 1 such that S -* o:A,8 - a,,8 -.* w does not hold for any a, ,8 E V* and w E E* .

We generally use symbols A , B , C, . . . to range over N, symbols a , b , c , . . . to range over E, symbols X, Y, Z
to range over V, symbols a , ,8, 1 , . . . to range over V*, and symbols v , w , x , . . . to range over E*. vVe write c to
denote the empty string .

A rule of the form A - B is called a 'ztnit rule. A grammar is called cyclic if A -.:,* A , for some A .
A (nondeterministic) finite automaton :F is a 5-tuple (K, E , � , s , F) , where K i s a finite set of states , of \\rhich s is the init ial state and those in F � J(are the final states , E is the input alphabet , and � is a finite subset

of J{ x E* x J{ .
vVe define a configuration to be an element of J{ x E* . vVe define the binary relation f- between configurations

as : (q , vw) f- (q' , w) if and only if (q , v, q') E �- The transitive and reflexive closure of f- is denoted by f-* .
Some input v is recognized if (s , v) f-* (q , c) , for some q E F . The language accepted by :F is defined to be

the set of al l strings v that are recognized . By definition , a language accepted by a finite automaton is called a. regular language .

3 The Structure of Parse Trees
\Ve define a spine in a parse tree to be a path that runs from the root down to some leaf. Figure 1 (a) indicates
two spines in a. parse tree for the string ((0 + 0) * 0) , according to a simple grammar .

Our main interest in spines l ies in the sequences of grammar symbols at nodes bordering on spines . Figure 1
(b) gives an example: to the left of the spine we find the sequence " ((" and to the right we find "+S) * S)" . The
way such pairs of sequences may relate to each other determines the strength of context-free grammars, and as
we will see later , by restricting this relationship we may reduce the generative power of context-free grammars
to the regular languages .

A sim pier exam pie is the set of parse trees such as the one in Figure 2 (a) , for a 3-line grammar of palindromes .
It is intuitively clear that the language is not regular: the grammar symbols to the left of the spine from the

1 60

S - a S a

S ---d S b
a

b

s
�

S a
�

S b
I
f

(a)

st

I
s
I

S,T C,'

�l I \
Ss

a Ss

b Ss
I

f

(b)

Ss

Ss a

Ss b
I

f

st - s
Ss - a Ss

Ss - b Ss

Ss - Ss a

Ss - Ss b

Ss - c

Ss - c

s - sJ
si - ss si
cl c
,__JS ___,.. 05

Figure 2: Parse trees for a palindrome : (a.) original grammar, (b) transformed grammar (Section 4) .

root t o E "communicate" with those t o the right of the spine. More precisely, the prefix of the input u p to
the point where it meets the final node c of the spine determines the suffix after that point , in a. way that an
unbounded collection of symbols from the prefix need to be ta.ken into account .

A formal explanation for why the grammar may not generate a regular language relies on the following
definition , due to [Chomsky, 1959b] :
Definition 1 A grammar is self-embedding if th ere is some A E N . such that A -* exA{J, for some ex # c and
/3 # f .
In order to avoid the somewhat unfortunate term nonse lf- embedding (or noncent er- ernbedding , as in [Langen
doen , 1975)) we define a. strongly reg1tlar grammar to be a. grammar that is not self-embedding. Strong regularity
informally means that when a. section of a spine in a parse tree repeats itself, then either no grammar symbols
occur to the left of that section of the spine, or no grammar symbols occur to the right. This prevents the
"unbounded communication" between the two sides of the spine exemplified by the palindrome grammar.

Obviously, right linear and left linear grammars (as known from standard literature such as [Harrison , 1978])
a.re strongly regular . That right linear and left linear grammars generate regular languages is easy to show .
That strongly regular grammars also generate regular languages will be proved shortly.

First , for an arbitrary grammar , we define the set of recursive nonterminals as :

N = {A E l'l I :lo , p[A -* exA/3] }

\tVe determine the partition .N' of N consisting of subsets N1 , N3 , . . . , N111 , for some rn � 0, of mutually recursive
non terminals :

N = { N1 , N3 , . . . , Nm }
N 1 U N '2 U . . . U Nm = N

Ni n Nj = © , for all i , j such that 1 :S; i < j ::S; m.
:li [A E Ni I\ B E Ni) <=> 301 , /31 , 03 , {33 [A -* 0 1 B/J1 /\ B -* 03A/33] , for all A , B E N

\Ve now define the function recursive from N to the set { left , right , s e lf , cyclic} :

where

recursive (Ni) left ,
right ,
s e lf ,
c:,;clic ,

Left Generating (Ni)
Right Generating (Ni)

if
if
if
if

,Left Generating (Ni) I\ Right Generating (Ni)
LeftGene rating (Ni) I\ ,RightGe nerating (Ni)
Left Generating (Ni) I\ Right Generating (Ni)

,LeftGenerating (Ni) I\ ,RightGenerating (Ni)

:l (A - o B /3) E P [A E Ni I\ B E Ni I\ ex # c]
:l (A - oB{J) E P [A E Ni I\ B E Ni I\ µ # c]

1 6 1

VVhen recursive (Ni) = left , Ni consist of only left-recursive nonterminals , which does not mean it cannot also
contain right-recursive nonterminals, but in that case right recursion amounts to application of unit rules . VVhen recm,sive(Ni) = cyclic , it is only such unit rules that take part in the recursion .

That 1·ecursive (Ni) = self , for some i, is a sufficient and necessary condition for the grammar to be self
embedding. We only prove this in one direction : Suppose we have two rules A 1 --;.. cx 1 B1 /31 , A 1 , B1 E Ni , and
A2 ___. cx2B2/32 , A2 , B2 E Ni , such that 0: 1 -/= c and /32 -/= c. This means that A 1 _,_ ex 1 B 1 /31 ---* ex 1 ex� A2/3� /31 --
ex1 ex� cx2 B2/32/3� /31 -* 0: 1 ex� cx2cx;A1 /3b/32/3� /31 , for some ex� , /3� , ex� , /3b , making use of the assumption that B1 and A2 , and then B2 and A 1 are in the same subset Ni of mutually recursive non terminals. In the final sentential
form we have 0: 1 ex� cx2cx; -/= c and /3� /32/3� /31 -/= c , and therefore the grammar is self-embedding.

A set Ni such that recv.rsiv e (Ni) = self thus provides an isolated aspect of the grammar that causes self
embedding, and therefore making the grammar strongly regular will depend on a solution for how to transform
the part of the grammar in which non terminals from Ni occur.

,ve now prove that a grammar that is strongly regular (or in other words, for all i , recm·sive (Ni) E
{ left , right , cyclic}) generates a regular language. Our proof differs from a proof of the same fact in [Chomsky,
1 959a] in that it is fully constructive: Figure 3 presents an algorithm for creating a finite automaton which
accepts the language generated by the grammar .

The process is initiated at the start symbol , and from there the process descends the grammar in all ways
until terminals are encountered , and then transitions are created labelled with those terminals. Descending the
grammar is straightforward in the case of rules of which the left-hand side is not a recursive nonterminal : the
groups of transitions found recursively for members in the right-hand side will be connected. In the case of
recursive nonterminals , the process depends on whether the nonterminals in the corresponding set from N are
mutually left-recursive or right-recursive ; if they are both, which means they are cyclic , then either subprocess
can be applied ; in the code in Figure 3 cyclic and right-recursive subsets Ni are treated uniformly.

,ve discuss the case that the nonterminals are left-recursive . (The converse case is left to the imagination
of the reader .) One new state is created for each non terminal in the set . The transitions that are created
for terminals and nonterminals not in Ni are connected in a way that is reminiscent of the construction of
left-corner parsers [Rosenkrantz and Lewis I I , 1 970] , and specifically of one construction that focuses on groups
of mutually recursive nonterminals [Nederhof, 1 994a, Section 5 . 8] .

An example is given in Figure 4 . Four states have been labelled according to the names they are given
in procedure make-fa . There are two states that are la.belled qB . This can be explained by the fact that
nonterminal B can be reached by descending the grammar from S' in two essentially distinct ways .

4 Approxhuating a Context-Free Language
Now that we know what makes a context-free grammar violate a sufficient condition for the generated language
to be regular , we have a good starting point to investigate how we should change a grammar in order to obtain
a regular language . The intuition is that the "unbounded communication'' between the left and right sides of
spines is broken .

,ve concentrate on the sets Ni with rec1trsive (Ni) = self. For each set separately, we apply the transformation
in Figure 5. After this approximation algorithm, the grammar will be strongly regular . We will explain the
transformation by means of two examples .

The first example deals with the special case that each nonterminal can lead to at most one recursive call of
itself. 1 Consider the grammar of palindromes in the left half of Figure 2 . The approximation algorithm leads to
the grammar in the right half. Figure 2 (b) shows the effect on the structure of parse trees . Note that the left

sides of former spines are treated by the new nonterminal S's and the right sides by the new nonterminal S's .
The general case is more complicated . A nonterminal A may lead to several recursive occurrences : A -;-*

cxAj3A-y . As before , our approach is to approximate the language by separating the left and right sides of spines ,
but in this case , several spines in a single parse tree may need to be taken care of at once.

As a presentation of this case in a pictorial way, Figure 6 (a) suggests a part of a parse tree in which all
(labels of the) nodes belong to the same set Ni , where rernrsive(Ni) = self . Other nodes in the direct vicinity
of the depicted part of the parse tree we assume not to be in Ni ; the triangles 6., for example, denote a mother
node in Ni and a number of daughter nodes not in Ni . The dotted lines labelled pl , p3 , p5 , p7 represent paths

1 This is the case for lin ear context-free grammars [Hopcroft and Ullman, 1979] .

162

let I{ = © , s = freslLState , .f = freslLStat e , F = { .f} ; make_fa (s , S', .f) . procedure m ake_fa (qo , et , q 1) : if Q' = f then let � = � U { (qo , f , q 1) } elseif a = a , son1e a. E E then let � = � U { (qo , a , q 1) } elseif a = X/3, some X E V , /3 E V * such that I /J I > 0 then let q = freslutat e ; make-fa (qo , X, q) ; make_fa (q , /3, q1) else let A = a ; (* a must consist of a single non terminal *) if A E Ni , som.e ·,;

end end.

then for each B E Ni do let qB = fresh_state end; if rernrsive (Ni) = left then for each (C -;- X 1 . . . Xm) E P such that C E Ni I\ X 1 , . . . , Xm tt. Ni do make_fa (qo , X1 . . . Xm , qc) end; for each (C -;- DX1 . . . Xm) E P such that C, D E Ni I\ X1 , . . . , Xm tt. Ni do 1nake_fa (qD , X1 . . . Xm , qc) end; let .6. = � U { (qA , f , q1) } else ·'the converse of the then-pa.rt" (* re cursi ,ve (Ni) E { right , cyclic} *) end else for each (A - /3) E P do make-fa (qo , /3 , q i) end (* A is not recursive *) end
procedure fresh_sta t e () : create some fresh object q ; let J\.- = J\.- u { q } ; return q end. Figure 3: Transformation from a. strongly regular grammar G = (E, N, P, S') into an equivalent finite automaton :F = (1{ , E, �, s, F) .
a.long nodes i n Ni such that the nodes t o the left o f the visited nodes a.re not i n Ni . I n the case o f p2 , p4 , p6 , p8 the nodes to the right of the visited nodes a.re not in N; . The effect of our transformation on the stru cture of the parse tree is suggested in Figure 6 (b) . \Ve see that the left and right sides of spines (e .g. pl and p2) a.re disconnected , in the same way as ''unbounded communication" between the two sides of spines was broken in our earlier example of the palindrome grammar. For example, consider the following grammar for mathematical expressions : S' A * B A (A + B) I a.

B [A] I b We have N = {A , B} , N = {Ni } , N1 = {A , B } . Note that rernrsi,v e (N1) = self. After applying the approximation algorithm to N1 we obtain : 163

S --+ A a
A SB
A Bb
B Be
B d

N = {S, A , B} N � {N1 , N2 } N1 = {S, A} N3 = {B} Figure 4 : Application of the code from Figure 3 on a small grammar. Assume the grammar is G = (E , N, P, S) . The fol lowing is to be performed for some fixed set Ni E N such that recursive (Ni) = self . 1 . If S E Ni , then augment the grammar with new non terminal st and rule st ---+ S and choose 5t to be the new start symbol of the grammar. 2. Add the following nonterminals to N: A1 , A1 , AB and A� for all A , B E Ni , 3 . Add the following rules to P, for all A , B , C, D, E E Ni : • AB ---+ X1 . . . Xm CB , for all (A - X1 . . . Xm C/3) E P , with X1 , . . . , Xm (f. Ni ; • AB - CB X1 . . . Xm , for all (A - aCX1 . . . Xm) E P, with X1 , . . . , Xm (f. Ni ; • AA -+ c ; • AA -'- c ; • 4 __._ AT . • . A ' • A1 - .4c X1 . . . Xm Cb , for all (C - X1 . . . Xm) E P , with X1 , . . . , Xm (f. Ni ; • Ai --'- CA X 1 . . . Xm E1 , for all (D - aCX1 . . . Xm E/3) E P , with X1 , . . . , Xm (f. Ni ; • Ak ---+B.4 . 4 . Remove from P the old rules of the form A - a , where A E Ni . 5 . Reduce the grammar .
Figure 5 : Approximation by transforming the grammar , given a set Ni .

s A * B AA c A1
A AA Al a A Al

A AA (AA BB - c l BA Al BJ BA a A A -BA [AA AA - c BT BB b B 1 41
A .A • B AA BA) BB ---,- c Bl BA a Ai BJ B ---+ B A l AB BB) AA BT BB b BJ Al

;- B l B B A BA AA] BB BJ A BB AB] Ak ---+ BI
B

AA + B 1
A AB l + BA AA + B1 AB + BB AA AB BA BB If we compare this example to the general picture in Figure 6 (b) , we conclude that a nonterminal such as BA derives paths such as p l , p3 , p5 or p7 , where B was the top label at the path in the original parse tree and A occurred at the bottom. A similar fact holds for nontermina.ls such as BA . Nonterminals such as B1 and

1 64

(a)

£

/
/

Figure 6 : The general effect of the transformation on the structure of parse trees . £

B_i indicate that the root of the complete subtree was la.belled A , and that the last node of the tree that was treated is la.belled B; in the case of B_i that node is a.t the top of a. path such a.s p l , p3 , p5 or p7 in the original tree , in the case of B1 that node is at the bottom of a. path such as p2 , p4 , p6 or p8 .

5 Lhuitations It is undecidable whether the language generated by a context-free grammar is regular [Harrison , 1 978) . Consequently, the condition of strong regularity, which is decidable and is a. sufficient condition for the language to be regular , cannot also be a. necessary conditi on. This is demonstrated by the following grammar :
s a .A. B a I C
A a .A. C
B B a C
C a. c a I e This (non-ambiguous) grammar generates the regular language a* ea* . Yet it is not strongly regular , due to the cycle corresponding to the rule C --+ a C a . Fortunately, our algorithm transforms this grammar into a strongly regular one which generates the same language a* ea* . However, in some cases a gra.nunar which is not strongly regular and generates a regular language may be transformed into one which generates a. strictly larger language. This pertains to a. claim ma.de by [Pereira and \rVright , 1991) that their method is always language-preserving when the original grammar already generates a regular language , which was refuted by a. revised paper by the same authors . 2 It turns out that tra nsforming a. context-free grammar generating a regular language into a. finite automaton accepting the same language is an unsolvable problem [Ullian, 1967) , and consequently, the method from [Pereira and Wright , 1991) cannot satisfy this property, nor can our new method . A simple example where our method has this undesirable behaviour i s the following:

S aSa I aSb I bSa I bSb I f This grammar generates the regular language of all strings over { a , b } of even length . Our approximation however results in the exact same grammar as in the example of palindromes . This grammar generates the regular language of all strings over { a , b} - not only those of even length . 3

2 Posted on the Computation and Language E-Print. Archive, as number 9603002.
2· The met.hod from [Pereira and Wright , 1 991] does a little better: of the strings of odd length i t excludes those of length 1; yet

it does allow all strings of length 3, -5, The t.wo met.hods are compared more closely in Section 7. 165

If we represent context-free languages by means of pushdown automata, we can define a subclass for which
regularity is decidable, namely those that allow a deterministic pushdown automaton . If such a detetministic
language is regular , we can furthermore construct an equivalent deterministic finite automaton [Stearns, 1 967] .
It turns out that even for this restricted class of context-free languages, the construction of corresponding finite
automata is quite complex: The (deterministic) finite automata may require a number of states that is a double
exponential function in the size of the original deterministic push down automata [Meyer and Fischer , 1 971) ;
[Valiant , 1975) has shown that the 'llpper bound to the number of states i s also a double exponential function .

For arbitrary context-free grammars that describe regular languages , no recursive function in the size of
grammars exists that provides an upper bound to the number of states of equivalent finite automata [Meyer
and Fischer , 1 97 1) .4

6 Refine1nent

Our approximation algorithm is such that the two sides of spines are disconnected for all nonterminals that
are involved in self-embedding (i .e . those in some fixed Ni with recursive (Ni) = se lf) . One can however retain
a finite amount of self-embedding by unfolding j levels of applications of nonterminals from Ni before the
approximation algorithm is applied . This is done in such a way that in those j levels no recursion takes place
and precision thus remains unaffected .

More precisely, for each nonterminal A E Ni we introduce j fresh non terminals A[l] , . . . , A [j] , and we change
the rules of the (augmented) grammar as follows.

For ea.eh A - X1 • · · Xm in P such that A. E Ni , and h such that 1 ::; h ::; j. , we add A. [h] - X� · · - X�1 to P ,
where

XL Xdh + 1) , if X1.: E Ni I\ h < j
X I.: , otherwise

Further , we replace all rules A - X 1 · · · Xm such that A (f_ Ni by A - X � · · · X �
1-

, where

Xf: Xk [l) , if X1.: E Ni
X 1.: , othenvise

If we take j = 3 , the (augmented) palindrome grammar becomes :

st S[l)
S[l] a S[2] a I b S[2] b I E

5[2] a S[:3] a. I b S[3] b I E

S[3] a S a I b S b I E

S a. S a l b S b l E

After applying the approximation algorithm , all generated strings up to length 6 are palindromes . Only gen
erated strings longer than 6 may not be pa.lfodromes : these are of the form wvv' wR , for some w E { a., b } 3
and v , v ' E { a. , b} * , where wR indicates the miiTor imagine of w. Thus the outer 3 symbols left and right do
match , but not the innermost symbols in both " halves" . In general , by choosing j high enough we can obtain
approximations that a.re language-preserving up to a certain string length , provided the grammar is not cyclic .5

A more complicated way of achieving such approximations, using refinement of the method from [Pereira and
Wright , 1 99 1) , was discussed in [Rood, 1 996) .

This language-preserving transformation in effect decorates nodes in the parse tree with numbers up to j
indicating the distance to the nearest ancestor node not in Ni . The second refinement we discuss has the effect
of indicatii1g the distance up to j to the furthest descendent not in Ni .

For this refinement , we again introduce j fresh nontermina.ls A[l] , . . . , A (j) for each A E Ni . Each A -
X1 · · · Xm in P is replaced by a collection of other rules , which a.re created as follows . We determine the (possibly
empty) list k 1 , . . . , kp of ascending indices of members that are in Ni : { k 1 , . . . , kp } = {k 1 1 ::; k ::; m /\ X1.: E Ni } 4 This is equivalent to stating that transformation of such a context-free grammar into a finite automaton accepting the same language is an unsolvable problem, which we mentioned before. 5 This problem of cyclic grammars can be easily overcome, but this is beyond the scope of the present paper.

166

and k 1 < . . . < kp . For ea.eh list of p numbers n 1 , . . . , np E { 1 , . . . , j, j + 1 } we create the rule A' -;- Xf · · · X�1 , where Xf: Xk [nk] , if xk E Ni I\ nk :::; j X k , otherwise
A' A [h + 1] , if A E Ni I\ h < j , where h = max n1.: 1 s 1.: sp

A , otherwise \i\Te assume that h evaluates to O if p = 0 . Note that j + 1 is an auxiliary number which does not show up in the transformed grammar ; it represents that the distance to the nearest ancestor node not in Ni is more than j . For the running example , with j = 3 , we obtain :
st s I S[3] I s[2] I s[1]
S a S a I b S b I a S[:3] a I b S[3] b

S[3] a S[2] a I b S[2] b S[2] - a S[l] a I b S[l] b S[l] ---- C Approximation now results in palindromes up to length 6 , but further in strings vwwRv' , for some w E { a , b }3 and v , v' E {a. , b} * , where it is the innermost , not the outermost , parts that still have the characteristics of palindromes .
7 Co1nparison The main purpose of this paper is to clarify what happens during the process of finding regular approximations of context-free languages. Our grammar-based method represented by Figure 5 can be seen as the simplest approach to remove self-embedding, and as we have shown , removing self-embedding is sufficient for obtaining a regu lar language. Given its simplicity, it is not surprising that more sophisticated methods, such as the LR-based method from [Pereira and \i\Tright , 1 99 1] , produce strict ly more precise approximations , i .e . regular languages that are smaller , in terms of language inclusion � - However, our empirical experiments have shown that such sophistication sometimes deteriorates rather than improves practical usefulness of the method . For example , the appendix of [Pereira. and Wright , 1991] contains a small grammar which is already strongly regular . The authors of that paper report they obtain a finite automaton with 26 15 states and 4096 transitions before determinization and minimization . For our method however , no approximation at all is needed , and construction of the finite automaton by means of the algorithm in Figure 3 produces a finite automaton with only 957 states and 275 1 transitions. After determinization and minimization of course the same automaton results . This example suggests that much of the "sophistication" of the LR-ba.sed method entai ls wasted computational overhead . We have also considered the grammar in Section 9 of [Church and Patil, 1 982] and the 4-line grammar of noun phrases from [Pereira. and Wright , 1991] . Neither of the grammars are strongly regular , yet they generate regular languages. For the first grammar , the LR-based and the grammar-based methods give the same results. For the second grammar , the two methods give the same result only provided the second refinement from Section 6 is incorporated into our grammar-based method , taking j = 1 . That the grammar-based method i n general produces less precise approximations may seem a weakness : a d hoe refinements such as those discussed in Section 6 may b e needed to increase precision . Our viewpoint is that the LR-ba.sed method also incorporates ad hoe mechanisms of obtaining approximations that are more precise than ·what is minimally needed to obtain a. regular langu�ge, but that these are however outside of the control of the user . A case in point is the grammar of palindromes . In Section 6 we demonstrated how precision for our method can be improved in a controlled manner . However , the LR-ba.sed method forces a result upon us which is given by (a {a , b } *a <=> a(ba)*) U (b{ a. , b } * b <=> b(ab)*) ; in other words, j ust the left-most and right-most symbols are matched , but alternating series of a. 's and b 's are excluded . This strange approximation is reached due to some intricate aspect of the structure of the LR automaton , and there is no reason to consider it as more natural 167

or desirable than any other approximation , and although the LR-ba.sed method allows additional refinement as well, as shown by [Rood , 1 996] , the nature of such refinement may be that even more of the same kind of idiosyncrasies is introduced . In addition , we point out that construction of an LR automaton , of which the size is exponential in the size of the grammar , may be a prohibitively expensive task in practice [Nederhof and Satta, 1996] . This is however only a fraction of the effort needed for the unfolding step of the LR-based method , which is in turn exponential in the size of the LR automaton . This became apparent when we tried to app ly two independently developed implementations of the LR-based method on a sub grammar for the J ava programming language. Both implementations crashed due to excessive use of memory, which is in keeping with our estimates that the number of LR stacks that need to be considered in this case may be astronomical . By contrast , the complexity of our approximation algorithm (Figure 5) is polynomial. The only exponential behaviour may come from the subsequent construction of the finite automaton (Figure 3) , when the grammar is descended in all ways, a source of exponential behaviour which is also part of the LR-based method. Our implementation produced a nondeterministic finite automaton from the J ava subgrammar within 1 2 minutes . Recently, [Grimley Evans, 1997] has proposed a third approach , which I rephrase as follows. We consider a context-free grammar as a recursive transition network [Woods, 1 970] : for each rule A ---+ X1 • • • Xm we make a finite automaton with states qo , . . . , qm and transitions (qi- 1 , Xi , qi) , 1 :S i :S m. These automata are then joined : Each transition (qi- 1 , B, qi) , where B is a nonterminal, is replaced by a set of c-transitions from qi- l to the "left-most" states for rules with left-hand side B, and conversely, a set of c-transitions from the "right-most" states for those rules to qi . This essentially replaces recursion by c-transitions , which leads to a crude approximation . An additional mechanism is now introduced that ensures that the list of visits to the states q0 , . . . , qm belonging to a certain rule satisfies some reasonable criteria: a visit to qi , 0 :S i < ni , should be followed by one to qi+l or q0 . The latter option amounts to a nested incarnation of the rule . Similarly there is a condition for what should precede a visit to qi , 0 < i :S m. Since only pairs of consecutive visits to states from the set { qo , . . . , qm } are considered , finite-state techniques suffice to implement such conditions. If we compare that approach to our grammar-based method combined with e .g . the second refinement from Section 6, we can roughly say that the difference is that while our approach provides exact approximations for trees up to a certain height, the approach by [Grimley Evans, 1997] provides an exact approximation when no nested incarnations of individual rules occur . This emphasis on treating rules individually has the consequence that the order of terminals in a string can become mixed-up even when the approximation is still exact with respect to the number of occurrences of terminals ; in effect , distinct rules interact in a way that is not consistent ,vith the recursive structure of the original grammar . It seems that the approach by [Grimley Evans, 1997] always results in approximations that are more precise than our approach without the refinements from Section 6 . An important difference o f our grammar-based method with both the LR-based method and the one from [Grimley Evans , 1997] is that the structure of the context-free grammar is retained as long as possible as much as possible . This has two advantages. First , the remnants of the original structure present in the transformed grammar, including the names of the nonterminals, can be incorporated into the construction of the finite automaton, in such a way that the automaton produces output which can be used to build parse trees according to the original grammar . The algorithm from Figure 3 can be easily extended to construct such a finite
transducer, using ideas from [Langendoen , 1 975 ; Krauwer and des Tombe, 1 98 1 ; Langendoen and Langsam, 1990] . Secondly, the approximation process itself can be monitored easily : The author of a grammar can still see the structure of the old grammar in the new strongly regular grammar, and can in this way observe what kind of consequences the approximation has on the generated language . Regarding other related work , I hesitate to mention [Langendoen and Langsam , 1987] , which seems to be concerned more with psycho-linguistic arguments than with any level of mathematical accuracy. As the LRbased method , this approach seems to be based on pushdown automata, which here implement a particularly incorrect variant of left-corner parsing, allowing ungrammatical sentences to be accepted, which seems to be unintentional. The manner in which finiteness of the automaton is achieved is by requiring a col lapse of a certain group of elements already in the parsing stack (if such a group of elements is at al l present) into a smaller combination of stack elements, upon finding that some stack element has more than 2 occurrences . This collapse represents a forced attachment of previously unconnected subtrees in the parse tree. The effect is 168

obviously a reduction of the language. However , clue to the in correctness of the variant of left-corner parsing , the resulting language may also contain sentences not in the original language . This makes comparison with other methods difficult , if not pointless . The intended purpose of the above work may however be to reduce , as opposed to extend , a context-free language to become an (infinite) reguiar language . Related to this is [Krauwer and des Tombe, 198 1) : two kinds of pushclown automaton are presented that implement top-clown and left-corner parsing, respectively. The regular approximation results simply by putting an upper-limit on the size of the stack , thus restricting the language . Unpublished work by :Mark Johnson6 solves the task in the same vein. The idea is extended to feature grammars in [Black , 1 989) . Some theoretical limitations of these ideas have been investigated by [Ullian , 1967) : Given a context-free language , it is unclecida.ble whether an infinite regular subset exists ; yet , given that it exists , it can be computed . Note that for practical purposes one is interested in determining a "large" regular subset , not just any infinite subset of a context-free language as in the theorem from [Ullia.n , 1967) . Another way to obtain a finite-state approximation of a grammar _ is to retain only the information a.bout allowable pairs (or triples , etc .) of adjacent parts of speech (cf. bigra.ms , trigra.ms, etc .) . This simple approach is proposed by [Herz and Rimon , 199 1) , and is reported to be effective for the purpose of word tagging in Hebrew . (For extension to probabilistic formalisms, see [Stokke and Segal , 1 994) .)
Acknowledge1nents Special thanks go t o Rene Deist for collaboration during my stay at the University o f Bochum. I thankfully acknowledge valuable discussions with Gertj an van Noord , l\tla.rk Johnson , Eberhard Bertsch , Anton Nijholt and Rieks op den Akker . This research was carried out within the framework of the Priority Programme Language and Speech Technology (TST) . The TST-Programme is sponsored by NWO (Dutch Organization for Scientific Research) . Further support was obtained from the German Research Foundation (DFG) , under grant Be1 953/ 1- 1 .
References [Black , 1 989) A .vV. Black . Finite state ma.chines from feature grammars. In International Workshop on Parsing Technologies, pages 277-285, Pittsburgh , 1 989. [Chomsky, 1 959a] N. Chomsky. A note on phrase structure grammars. Jnforrnation and Control, 2 :393-395 , 1 959 . [Chomsky, 1 959b] N . Chomsky. On certain formal properties of grammars . Information and Control, 2 : 1 37-167 , 1959 . [Church and Patil , 1 982] K. Church and R. Pati l . Coping with syntactic ambiguity or how to put the block in the box on the table. American Journal of Computational Ling·u istics, 8 : 139-149 , 1 982 . [Grimley Evans , 1997] E . Grimley Evans . Approximating context-free grammars with a finite-state calculus. In 35th Annual Jvf eet-ing of the A GL , pages 452-459 , Madrid , Spain , .July 1997. [Harrison , 1 978) M .A. Harrison . Introduction to Formal Language Theory. Addison-Wesley, 1 978 . [Heckert , 1 994) E. Heckert . Behandlung van Syntaxfehle rn fiir LR-Sprachen ohne 1(orrekforversuche . PhD thesis , Ruhr-U niversitat Boch um, 1994 . [Herz and Rimon , 199 1) .J . Herz and M . Rimon . Local syntactic constraints. In Proc. of the Second International Workshop on Parsing Technologies, pages 200-209 , Cancun , Mexico , February 1 99 1 . [Hopcroft and Ullman , 1 979) .J .E. Hopcroft and .J . D . Ullman . Introduction to A ,ut omata Theory, Languages, and Computation. Addison-Wesley, 1979 . 6 Left Corner Transfo rms and Fin it e' Stat e A pp ro:rimat ions, draft , May 1 996. 169

[Krauwer and des Tombe, 198 1] S . Krauwer and L . des Tombe . Transducers and grammars as theories of language. Theoretical Ling1tistics, 8 : 1 73-202 , 1 98 1 . [Langendoen and Langsam , 1 987] D .T . Langendoen and Y . Langsam. O n the design of finite transducers for parsing phrase-structure languages . In A . Manaster-Ramer , editor, Mathematics of Language , pages 1 9 1-235 . . J ohn Benj amins Publishing Company, Amsterdam , 1 987 . [Langendoen and Langsam, 1 990] D .T . Langendoen and Y. Langsam . A new method of representing constituent structures . Annals New York A cademy of Sciences, 583 : 143-160 , 1 990 . [Langendoen, 1975] D .T . Langendoen. Finite-state parsing of phrase-structure languages and the status of readjustment rules in grammar. Linguistic Inquiry, 6(4) :533-554 , 1975 . [Meyer and Fischer , 1 97 1] A .R. Meyer and M . .J . Fischer . Economy of description by automata, grammars, and formal systems. In IEEE Conference Record of the 12th A nnual Symposium on Switching and A 1ttomata Theory, pages 188-19 1 , 1 97 1 . [Nederhof and Sat.ta, 1 996] M . .J . Nederhof and G . Sat.ta. Efficient tabular L R parsing. In 34th Annual Meeting of the A GL , pages 239-246 , Santa Cruz , California, USA , .June 1996 . [Nederhof, 1994a] M . .J . Nederhof. Linguistic Parsing and Program Transformations. PhD thesis , University of Nijmegen , 1994 . [Nederhof, 1 994b] M . .J . Nederhof. An optimal tabular parsing algorithm . In 82nd Annual Mee ting of the A GL , pages 1 1 7-124 , Las Cruces , New Mexico, USA, June 1 994. [Pereira and Wright , 1991] F .C .N. Pereira. and R.N. Wright . Finite-state approximation of phrase structure grammars . In 29th A nnual Mee ting of the A GL, pages 246-255 , Berkeley, California, USA, June 1 99 1 . [Rood , 1 996] C . M . Rood . Efficient finite-state approximation o f context free grammars . I n A . Kornai , editor , Extended Finite State Models of Language, Proceedings of the ECAI '96 workshop , pages 58-64 , Budapest University of Economic Sciences , Hungary, August 1 996 . [Rosenkrantz and Lewis II , 1 970] D . . J . Rosenkrantz and P.M . Lewis II . Deterministic left corner parsing. In IEEE Conference Record of the 1 1th An1rnal Symposium on Switching and A utomata TheonJ, pages 1 39-152 , 1 970 . [Stearns, 1967] R .E . Stearns . A regularity test for pushdown machines . Information and Control, 1 1 :323-340 , 1 967 . [Stokke and Segal , 1 994] A . Stokke and .J . Segal . Precise n-gram probabilities from stochastic context-free grammars. In 32nd Annual Meeting of the A GL , pages 74-79 , Las Cruces , New Mexico, USA , .June 1 994 . . [U ll ian , 1967] J . S . Ull ian . Partial algorithm problems for context free languages . Inform ation and Control, 1 1 : 80-10 1 , 1 967 . [Valiant , 1 975] L . G . Valiant . Regularity and related problems for deterministic pushdown automata. Journal of the A CM, 22 (1) : 1-10 , 1975 . [Woods , 1 970] W .A . Woods. Transition network grammars for natural language analysis . Communications of the A CM, 1 3 (1 0) : 59 1-606 , October 1 970.

1 70

