
Technological evaluation of 
a controlled language application: 

precision, recall, and convergence tests for SECC 

Geert Adriaens** and Lieve Macken+ 

* Siemens Nixdorf Software Centre Liege 
Rue des Fories 2, B-4020 Liege, @csl.sni.be 

+ University of Leuven Centre for Computational Linguistics 
Maria-Theresiastraat 21, B-3000 Leuven, @ccl.kuleuven.ac.be 

Abstract 

We report on two performance tests we did with the SECC controlled 
English checker and corrector. Goal of the tests is a technological 
evaluation of the tool: current performance, potential optimal performance. 
The first test is a precision/recall test using a "real-life test suite"; we 
discuss its results in terms of specific system components that need 
improvement, and also compare it to a similar test done with the Boeing 
SE Checker. The second test is a newly devised one; we call it a 
convergence test. Its goal is to check whether the system leaves its 
proposed automatic corrections untouched in a subsequent run. Results 
show a degree of non-convergence, and point again at previously unnoticed 
weaknesses in the system that must be taken care of. The problem types 
that came out of both tests can be of interest for developers of similar 
grammar checking (and correcting) applications. 

1. Introduction 

1.1 SECC in a nutshell 

SECC (A Simplified English Grammar and Style Checker/Corrector) is a controlled 

language application in development in the context of an LRE-21 project with the same 

name. Development partners in the project are Siemens Nixdorf (BE), the University of 

Leuven (BE), Cap Gemini Innovation (FR) and Sietec (DE); intended user is Alcatel Bell 

(BE)2. The project runs from November 93 till May 96, and is currently at a stage where a 

major deliverable (the sentence-level batch writing tool) is finished. This tool checks 

technical English documentation in the field of telecommunication (subfield telephony) 

1 LRE stands for Linguistic Research and Engineering; it is a framework for projects co-funded by the 
European Commission. 
2 In more personalised terms, SECC is also: Luc Pauwels (University of Leuven); Anne Derain, Philippe 
Levisse, Olivier Clavel (Cap Gemini); Frederik Durant (Siemens Nixdorf); Patrick Goyvaerts (Alcatel Bell); 
and Uus Knops (Sietec). 

123 



against a controlled English lexicon (basic vocabulary and technical vocabulary) and a 

controlled grammar in use at Alcatel in Belgium. It is “sentence-level”, because it does not 

check text units beyond the sentence; it is “batch”, because it only handles the submission of 

completed texts.3 As described in more detail elsewhere4, SECC is conceived as a special 

language pair (English to SE) within the Metal® MT development environment. Its input 

can be any English sentence; its output is a dual object: the input sentence annotated with 

error messages, and a proposed correction for the whole sentence. 

As to error messages and correction, an important distinction we make for SECC is that 

between a weak and a strong diagnosis. A weak diagnosis refers to a possible error: the 

system detects a phenomenon in the input that sometimes is an error, and sometimes is not. 

Due to its limitations (lack of semantic and contextual information), however, SECC can 

never be sure it is an error. A case at hand is Avoid splitting infinitives unless the emphasis 

is on the adverb. The system can detect a split infinitive, but it has no indication of 

emphasis. It will be clear that cases of weak diagnosis (possible error) never trigger 

automatic correction. A strong diagnosis refers to a certain error: the system detects a 

phenomenon in the input that always is an error. An example is Use a (an) before a word 

that starts with a consonant (vowel) sound. A+vowel sound or an+consonant sound can be 

detected and flagged as errors. In cases of strong diagnosis, automatic correction is 

sometimes possible and done by SECC (as for the a/an distinction). In all, SECC then 

distinguishes between three cases: W-DIAG (weak diagnosis), S-DIAG (strong diagnosis, 

no correction), and S-CORR (strong diagnosis, correction). As to numbers of rules: the 

Alcatel grammar (COGRAM) contains 141 rules in all (including a general lexical rule Use 

only approved basic or technical SE-words5) . SECC currently implements checks for 72 of 

these: 7 W-DIAG, 10 S-DIAG, and 55 S-CORR (so, in all 65 cases of strong diagnosis). 

All through this paper, we will give examples of the SECC output as it appears in a batch 

error report. The proposed correction is given first, then the original input sentence, 

followed by all syntactic errors grouped according to the part of the sentence they apply to. 

3 Current developments address the issues of checking units above the sentence level (from paragraph to full 
text), and of allowing “interactive” or “on-line” checking of a selected text part within a word processor. 
4 See Adriaens 1994a or 1994b. 
5 A few figures about lexicon sizes: the Metal® general English lexicon we use to date contains over 50000 
base forms; as subsets of it, the Alcatel basic SE lexicon (COLEX) contains about 1750 approved words, 
and the Alcatel technical SE lexicon (COTECH) about 550 (taken from a text corpus of 2500 sentences we 
use as a testbed for SECC). SECC further contains SE translations for some 1200 non-SE words (basic and 
technical). 

124 



Finally, all errors violating the above general lexical rule are listed; they come in three 

subtypes: 

1. words that are not SE, and have an SE-equivalent are shown as x --> y 
2. words that are not SE (but are English), and do not have an SE-equivalent are shown as x --> ? 
3. words that are not SE, nor recognised as English (i.e. not in the dictionary) are shown as x   ?? 

To conclude this short introduction to SECC, let us mention that there exist several other 

controlled English applications comparable to ours: Boeing’s BSEC (Boeing Simplified 

English Checker)6, Carnegie’s ClearCheck (reported on elsewhere in this volume), GSI- 

Erli’s AECMA Checker7, Cap Volmac’s AECMA Checker8, Oracle’s CoAuthor AECMA 

Checker9. However interesting a comparison between these systems could be, it falls 

beyond the scope of this paper. Let us suffice by saying that the number of these 

applications is growing, that most of them are based on the SE standard used in the 

aerospace industry (AECMA), and that (currently) only few offer far-reaching automatic 

correction (SECC, Cap Volmac). We will come back to the Boeing BSEC and to the issue 

of automatic correction in the tests reported below. 

1.2 Goal of this paper 

The goal of this paper is to report on a technological evaluation of SECC (as opposed to 

operational evaluation at the Alcatel user site). For this evaluation, we did two tests: a 

precision/recall test, and a convergence test. The first type of test is well known from the 

information retrieval domain, and has also been done for the Boeing BSEC (see section 2). 

The second type of test is new, and has (to our knowledge) never been done before; it is 

strongly related to the automatic correction feature of the system (see section 3). As a 

general note to these tests, we want to stress that they are not about naked figures in the 

first place (we claim no statistic relevance whatsoever), but about what the figures reveal in 

terms of strengths and weaknesses (i.e. opportunities for improvement) of the system. The 

discussion also aims at stressing findings that can be of interest to anybody in the NLP 

community concerned with building similar applications or devising tests for technological 

evaluation of NLP applications. 

6 See e.g. Wojcik et al 1990, 1993. 
7 We are not aware of publications about GSI-Erli's Checker; it was demonstrated at the First Language 
Engineering Convention in Paris, July 1994. 
8 See e.g. van der Steen and Dijenborg, 1992. 
9 CoAuthor is available as an off-the-shelf software package. 

125 



2. Precision/Recall 

In the context of grammar checking, precision and recall refer to the following rates 

obtained when running the application on a test corpus: 

Precision = Number of correctly flagged errors 
Total number of errors flagged 

Recall     =     Number of correctly flagged errors 
Total number of errors actually occurring 

Good precision requires a low rate of spurious errors, i.e. errors that the system reports, but 

are not there; good recall requires a low rate of missed errors, i.e. errors that are there, but 

are not reported by the system. 

For SECC, the corpus we used for our precision/recall test is a cross between a real-life 

corpus and a test suite, i.e. a “real-life test suite”. To understand its nature, a word is in 

order about COGRAM, Alcatel’s paper grammar that lies at the basis of SECC. Rules in 

COGRAM look like this: 

Do not express an idea in parentheses inside a sentence. Use a separate sentence instead. 
Use parentheses only to enclose abbreviations. 

- The operator can correct the taxation information (add or subtract taxation units). 

+   Public-Switched Telephone Network (PSTN) 
[abbreviation] 

Use of in the genitive case when a possessive noun form is inanimate. 

- the System 12’s novel and attractive architecture 

+ the novel and attractive architecture of System 12 

Each rule in COGRAM is accompanied by at least one example containing a violation of 

that rule10 (the minus-examples); unless the correction is either obvious or too complicated 

(as for the minus-example in the first rule above), there is also a corresponding plus- 

example suggesting a correction for the error at hand (as for the second rule above). In 

cases where a phenomenon is sometimes an error and sometimes correct, a rule can also 

10 Given its real-life nature, the example may contain multiple occurrences of the error, as well as other 
errors. 

126 



contain plus-examples without a minus-example (illustrating the correct usage, as for the 

first rule: parentheses are only allowed for abbreviations). All the examples are taken from 

text material produced by the technical writers for whom the grammar is intended (this is 

the “real-life” aspect). The important thing now is that our test suite contains only the 

minus-examples, and the plus-examples without minus-counterpart. For the former, it is 

clear we cannot add the plus-examples, since they contain corrections (S-CORRs) that 

SECC should (partly) make11. The plus-examples without minus-counterpart are important 

though, because they are a good test for SECC’s precision. In all, this test suite contains 

253 sentences with a average sentence length of 9.9 words; it consists of 238 minus- 

examples, and 15 plus-without-minus-examples. Before our precision/recall test, they had 

not been tested exhaustively with SECC. The most interesting characteristics of this test set 

lie in its non-artificial nature, and its guaranteed coverage of all implemented rules12. 

All 253 sentences were first hand-annotated for all errors that they contain (giving us the 

reference material for the test). Next, SECC was run on the corpus, and its output was 

checked for missed and spurious errors. 

In all, the hand-annotated corpus revealed 541 errors. SECC flagged 574 errors, of which 

73 were spurious; 40 errors were missed. This gives a total of 501 correctly flagged 

errors13. SECC’s precision rate for our test suite is then 501/574, i.e. 87%; its recall rate is 

501/541, i.e. 93%. Although both tests are difficult to compare14, Wojcik et al. (the Boeing 

BSEC) found a precision rate of 79% and a recall rate of 89% for their test on a statistically 

representative sample from a large body of real-life text. The only thing we want to point 

out about these figures is that both systems perform worse for precision than for recall. If 

11 The effect of (re)submitting this kind of examples to SECC is exactly the object of the convergence test 
discussed in section 3. 
12 In the context of a collaboration between the SECC project and another LRE-2 project TSNLP (Test 
Suites for Natural Language Products), another test suite is under construction using the SECC resources. It 
will be interesting to compare the results of testing this suite to the results reported here. 
13 Alternatively, (total occurring)-(missed), 541-40, or (total flagged)-(spurious), 574-73, i.e. 501. 
14 A detailed comparison would lead us too far; major differences are: BSEC was tested on a representative 
real-life test corpus, SECC on a real-life test suite; BSEC's corpus came from writers supposed to apply the 
SE rules, SECC's material dates from before the introduction of COGRAM at Alcatel; BSEC only tested for 
the 10 most frequently occurring rules, SECC tested for all rules; BSEC did not start from a corpus 
annotated by hand for the errors but only for the correct analyses (assuming that a correct analysis 
guarantees correct error reporting), SECC started from hand-annotation for the errors (not making the 
BSEC assumption). Finally,  BSEC and  SECC  are based on  different grammars  (AECMA  versus 
COGRAM), differ in parser and lingware technology (BSEC does not incorporate a recovery strategy when 
no sentence analysis is found, whereas SECC does - see the discussion of "phrasal analysis"; BSEC only 
has the error category S-DIAG), and cover different domains (aviation versus telecommunication). If it is 
hard setting up evaluation tests for NLP applications, it is clear that comparing them is not exactly easier. 

127 



we link technological evaluation to operational evaluation (the user appreciation of the 

system), it is exactly the precision rate that should be improved as much as possible. 

Spurious errors are at least misleading, often irritating (especially if there are many of 

them), and in the worst case they lead to a total rejection of the tool (when the user is sure 

that the errors are spurious). Missed errors are not so bad (from a user’s point of view): 

mostly, the user will never know there were missed errors at all. For one thing, if he knew 

what errors he made, he would not need the tool; for another, missed errors by definition do 

not show up in the system output (so they cannot be a source of irritation). 

We examined the causes of the missed and spurious errors (see table 1 on the next page), in 

order to see if the system could be improved. Indeed, all cases of lingware problems, 

monolingual lexicon problems and “bilingual”15 lexicon problems were easy to solve. Thus, 

6 (1+0+5) missed errors and 29 (6+18+5) spurious errors could be eliminated right away. 

Running SECC after these modifications gave a precision rate of 93% and a recall rate of 

94%16. Given the nature of our test data (a test suite) and the optimisations made, we 

estimate that this is close to the optimal performance SECC can attain. If some of the 

remaining hard but solvable problems are solved (wrong and phrasal analysis), the absolute 

optimum could be 95% for precision and recall17. 

15 Recall that SECC’s bilingual or transfer lexicon contains mappings of non-SE words to SE words; in our 
approach, the SE words themselves are also identified in the transfer lexicon (not in the source/target 
lexicon), i.e. as reflexive transfer entries (see Adriaens 1994a/b). 
16 Precision: (501+6)/(574-29), i.e. 507/545, 93%; recall: (501+6)/541, i.e. 507/541, 94%. 
17 Note that both rates (precision and recall) converge to the same (hypothetical) optimum of 95%. 

128 



 

Table 1: causes of missed and/or spurious errors 

As to other figures, it is interesting to mention that of the 72 rules implemented (and 

addressed by the test suite), only 21 gave rise to missed and/or spurious errors (see table 2 

on the next page; the rules are ordered by descending frequency of flagged errors). To get 

an idea of the relative weight of the rules, we composed a top-10 of rules generating the 

• most error messages. Of course, this top-10 was not derived from the test suite results; we 

derived it from the real-life corpus we used for the convergence test discussed below. Table 

3 shows the top-10 of these rules18. (The error frequencies are also those found in that 

corpus; they are added here without further comments). Crossing this list with the list of 21 

rules yielding missed/spurious errors, we find 8 of the 10 most frequent errors among these 

21 (they are marked with a asterisk). This is again a good indication of what rules we 

should concentrate on when trying to improve system performance. In any case, it was a 

good sign that all of the spurious errors that can be corrected (the 29 mentioned above) are 

generated by rules from the top-10. 

18 Four of these phenomena are also in the BSEC top-10 of most frequent errors: usage of non-SE words 
(1st), missing articles (2nd), bad use of noun clusters (3rd), and passives (4th). For both applications, errors 
against SE word usage are by far the most frequent. 

129 



 

Table 3: top-10 most frequent errors detected/corrected by SECC (source: convergence corpus) 

One rule that jumps to the eye in table 2 because of its bad performance is the rule ''Missing 

article" about the correct usage of articles: Use the before a noun for specific reference; 

use a/an before a singular noun for non-specific reference. It is a top-10 rule (also for 

Boeing's BSEC), and scores only 32% for precision (75% for recall). This rule relies 

heavily on exhaustive and correct coding of the mass-count distinction in the monolingual 

lexicon. In the implementation, singular countable nouns cannot occur without a determiner. 

Spurious  errors  are  caused  by  incorrectly coding words as count (when they should either 

130 

Table 2: missed and spurious errors per Cogram rule



be mass or count-and-mass). Missed errors are caused by either coding mass-nouns as 

count-nouns, or in cases where words are coded (correctly or wrongly) as count-and-mass. 

In this last case, SECC has no way of disambiguating, and remains silent; it does not issue a 

W-DIAG either, because this would lead to too many spurious (i.e. irrelevant) messages. 

Again, the bottom Line is that the test results point at a very specific phenomenon in the 

system that should be improved (lexicon coding). 

A final word is in order about the effect of wrong and phrasal analysis. With “wrong 

analysis”, we refer to cases where SECC finds an overall sentence analysis, but not the 

right one (e.g. with wrong attachments); with “phrasal analysis”, we refer to the fail-soft 

mechanism that always returns the most interesting constituent chunks identified in the input 

in case no overall sentence analysis is found (also called “fitted parse”19). Given earlier 

statements about the effect of bad and fitted parses, we were interested in their effect on 

system performance. The general feeling20 is that bad parses (fitted or not) still yield fairly 

reliable error messages. As table 1 shows, we have to mitigate this. For the cases of bad 

analysis, 35% of the spurious errors (26 out of 73) occur in badly analysed sentences. As to 

phrasal analysis, it yields about as many missed as spurious errors, and is globally taken 

responsible for 25% (29 out of 113) of all missed and spurious errors. That it gives rise to a 

lot of missed errors (37% of all missed errors) is not surprising: the analysis is incomplete, 

and hence certain rules never get applied to it. In our test suite, we have too few cases of 

phrasal analysis to make claims for or against fitted parsing. Some phrasals do yield correct 

error reports (see also below for a discussion of phrasal analysis and convergence). In any 

case, the lesson to be drawn is that the analysis component of the system is critical for the 

performance of SECC (or any such application, for that matter). In the SECC project, an 

additional workpackage has been defined that is precisely meant to reduce cases of bad and 

phrasal analysis. As soon as a new version of the analysis component is available, we can 

check the effect by redoing the precision/recall test. 

19 See Jensen and Heidorn 1993, in particular the contributions by Ravin, and Richardson and Braden- 
Harder (the IBM PLNLP approach and Critique system). 
20 See Wojcik et al. 1993, Richardson and Braden-Harder 1993. 

131 



3. Convergence 

3.1 Definitions 

SECC is currently still one of the rare systems that offer proposals for correction in the 

form of completely (re)-generated “target” SE sentences. Given this feature, we were 

intrigued by the effect of resubmitting proposed corrections to the system. The intuition is 

that SECC should not flag its own corrections; if it does, we should again be able to 

pinpoint flaws in the system and find room for improvement. 

We define the notion of convergence as the following rate: 

Convergence =  number of automatically corrected sentences (runl) that remain untouched (run2) 
number of automatically corrected sentences (runl) 

A sentence is considered to be corrected automatically as soon as one correction is made 

(one case of S-CORR suffices). 

The notion “untouched” goes in two directions: 

• First, no cases of weak diagnosis and of strong diagnosis without correction (W- 
DIAG and S-DIAG) from runl should disappear in run2 (cp. missed errors in 
recall). As a "benign" exception, however, we accept the logical disappearance of a 
W-DIAG or S-DIAG as a side-effect of an S-CORR (where both relate to the same 
input segment). 

An example is the following: 

RUN1 

CORRECTION: 
answers 

DIAGNOSIS: 
responses 

responses 
COGRAM 63: Express action with verbs, not with verb-derived nouns. [W-DIAG] 

responses (N) --> answer, reaction [S-CORR] 

RUN2 

<the input answers does not generate any messages> 

In the first run, responses generates two error messages; it is lexically corrected to 
answers (S-CORR). As a consequence, the other error message (W-DIAG) that 
was triggered by responses (rightly) disappears. 

132 



• Second, no new cases of strong diagnosis, with or without correction (S-DIAG 
and S-CORR) should be introduced in run2 (cp. spurious errors in precision). 
Although a rigid interpretation of "untouched" might exclude the acceptance of 
new weak diagnosis messages in the second run, we do accept new W-DIAGs in 
the second run. 

A relatively innocent example is the following: SECC corrects provided that to if 
(runl); if triggers a W-DIAG, warning against the potential wrong usage of the 
conditional conjunction as a temporal one (where when is intended). A more 
controversial example is the following: 

RUN1 

CORRECTION: 
this concentrator is designed on the same technology as A1000 S12. 

DIAGNOSIS: 
this is a concentrator designed on the same technology as A1000 S12. 

this is a concentrator designed on the same technology as A1000 S12 
COGRAM 102: Avoid “this is”, “these are”, and so on. [S-CORR] 

RUN2 

CORRECTION: 
this concentrator is designed on the same technology as A1000 S12. 

DIAGNOSIS: 
this concentrator is designed on the same technology as A1000 S12. 

is designed 
COGRAM 81: Do not use the passive voice. [W-DIAG] 

The first run flags and corrects this is..; this results in a passive sentence, and some 
cases of passive are only weakly diagnosed (other cases are strongly diagnosed 
and even corrected) 21. 

21 Although we cannot make a thorough analysis of the value of W-DIAG (value one might have doubts 
about), we can briefly say a few things about it. The source of its existence is to a large extent pedagogical: 
point users to the potential difficulties associated with certain constructions. On the other hand, it is clear 
that W-DIAGs are not always relevant for the sentence that triggers them (if they do not apply, one could 
consider them as spurious errors). To get a better idea of their usefulness, we checked the relevance of all 
W-DIAGs in the convergence corpus (i.e. is the possible error actually an error in the case at hand?). We 
found that 40% of the W-DIAGs were indeed relevant. Rather than leaving them out completely, we will 
make sure that users can switch off the W-DIAGs if they find them too irritating. 

133 



To complete the introduction of the convergence notion, we give one more example that 

converges completely (examples of non-convergence are discussed further below). 

In the first run five SE-errors (four grammatical and one lexical) are corrected (S-CORR), 

two more certain errors are signalled (S-DIAG), and for one a warning is given (W-DIAG). 

In the second run, the two strong error messages and the weak one are reported again. No 

new error messages are generated. 

RUN1 

CORRECTION: 
Each call that waits for connection to an operator is considered to he in a queue, regardless of the shape that such 
a queue can take. 

DIAGNOSIS: 

Each call which is waiting for connection to an operator is considered to be in a queue, regardless of 
the form such a queue may take. 
COGRAM 29: Write short sentences. [S-DIAG] 

which is waiting for connection to an operator 
COGRAM 43: “That” for non-persons in restrictive relative clauses. [S-CORR] 

is waiting 
COGRAM 79: Avoid present participles in verb groups. [S-CORR] 

connection 
COGRAM 73 74: “a”/ “an” for non-specific reference; “the” for specific reference. 

[S-DIAG] 
is considered 
COGRAM 81: Do not use the passive voice. [W-DIAG] 

such a queue may take 
COGRAM 44: Relative clause must start with relative pronoun. [S-CORR] 

may 
COGRAM 86: Only “can” for ability/possibility in the present. [S-CORR] 

form (N) —> shape , document, page [S-CORR] 

RUN2 

CORRECTION: 
Each call that waits for connection to an operator is considered to be in a queue, regardless of the shape that such 
a queue can take. 

DIAGNOSIS: 

Each call that waits for connection to an operator is considered to be in a queue, regardless of the shape 
that such a queue can take. 
COGRAM 29: Write short sentences. [S-DIAG] 

connection 
COGRAM 73 74: “a”/ “an” for non-specific reference; “the” for specific reference. [S-DIAG] 

is considered 
COGRAM 81: Do not use the passive voice. [W-DIAG] 

134 



3.2 General test results 

For our convergence test itself then, we collected 503 sentences from a corpus of Alcatel 

telecommunication text of over 3000 sentences (by picking every sixth sentence). We ran 

them through SECC, and resubmitted all sentences that gave rise to at least one S-CORR22. 

Here are the results: 

RUN1 

Number of correct sentences 164 
Number of automatically corrected sentences 238 
Number of sentences with only W-DIAG and S-DIAG 101 

Total number of sentences 503 

RUN2 

Number of correct sentences 225        (up 12% from 164) 
Number of automatically corrected sentences 31 
Number of sentences with only W-DIAG and S-DIAG 247 

Total number of sentences 503 

From the bare figures, it is clear that 31 sentences did not converge in the second run (new 

S-CORR occurrences). Examination of the second run in more detail revealed another 24 

non-converging sentences (introducing new S-DIAGs, or suppressing original W-DIAGs/S- 

DIAGs), which brought the total of non-converging sentences to 55. Hence, the 

convergence rate is (238-55)/238 = 183/238, i.e. 77%. In other words, a little more than 2 

sentences out of 10 did not converge. 

As for our precision/recall test, we examined the causes of the divergence to see if some 

problems could easily be fixed (see table 4 on the next page). All 17 cases of lingware 

problems could indeed be fixed, whereas the cases of different analysis due to homography, 

and the cases of bad or phrasal analysis require more work. With the lingware problems 

fixed, the convergence rate goes up slightly from 77% to 84% (183+17/238 = 200/238), 

leaving us with a little less than 2 non-converging sentences out of 10. 

22 Note that for the convergence test, we were not concerned about precision and recall in the first run; 
convergence is tested here as a purely application-internal (SECC-internal) matter. 

135 



 

Table 4: Causes of non-convergence 

3.3 Lingware problems 

Refining the category “lingware problems”, we saw that some cases of non-convergence 

were simply caused by bugs that led to badly executed correction (generation) of the target 

SE sentence. A simple example is the case where the first run replaced the illegal “...” (in 

enumerations) at the end of a sentence by “and so on”, without adding the full stop. The 

second run then does an S-CORR for the rule End a sentence with a full stop, adding the 

final punctuation. Note again that without the convergence test, some of these errors might 

never have been found, or only during productive use of the tool. 

Beside these SECC-internal errors, there are three potential sources of divergence with 

which any system might be confronted: 

1. lexicon-lexicon feeding relationships (with possible circularity): replace X by Y, and 
replace Y by Z (or even worse: by X) 

2. lexicon-grammar or grammar-lexicon feeding relationships (with possible circularity): the 
lexicon replaces X by Y, and the grammar corrects Y to be Z (or even worse: to X), and 
vice versa 

3. grammar-grammar feeding relationships (with possible circularity): one grammar rule 
corrects X to be Y, another corrects Y to be Z (or even worse: to X) 

We found no cases of lexicon-lexicon feeding relationships. This is not surprising, because 

we run consistency checks on our monolingual and bilingual lexicons to prevent these 

feeding relationships from occurring. We regularly check if 

• all source entries in the English-SE bilingual lexicon exist in the English lexicon 
• all target entries in the bilingual lexicon exist in the SE lexicon, i.e. are SE-accepted 

(by verifying if there is a reflexive entry for them in the bilingual lexicon — this is 
our way of marking an entry as SE-approved) 

• no circularities occur in the bilingual lexicon 

We did find cases of the other possible feeding relationships, though, that we were not 

aware of before the convergence test. A lexicon-grammar feeding relationship existed 

136 



between the dictionary entry therefore --> thus (S-CORR), and the grammar rule Avoid 

connecting adverbs such as “hence”, “thus”, “as such” or “so” (S-DIAG). A grammar- 

grammar feeding relationship is illustrated by the following example: 

RUN1 

CORRECTION: 
25 ISDN exchanges were active. 

DIAGNOSIS: 
A total of 25 ISDN exchanges were operational. 

A total of 
COGRAM 62: Avoid wordiness. [S-CORR] 

operational (A) --> active , working [S-CORR] 

RUN2 

CORRECTION: 
25 ISDN exchanges were active. 

DIAGNOSIS: 
25 ISDN exchanges were active. 

25 
COGRAM 121: Number as first word in full. [S-DIAG] 

In the first run, a total of is deleted (wordy expression). If, however, this deletion happens 

in the beginning of a sentence, the possibility exists that a number becomes the first word. If 

so, it gets flagged because it should be written in full. 

3.4 Different analysis 

As table 4 showed, there are 10 cases (18%) in which a particular phenomenon causes 

divergence: a different analysis for a slightly changed sentence, due to homography in one 

of its words. In these cases, the effects can be quite unpredictable (potential strong 

divergence). An example: 

137 



RUN1 

CORRECTION: 
Exchange auxiliary control 

DIAGNOSIS: 
Exchange Auxiliary Control ;;Exchange analysed as NOUN, the whole as an NP 

Auxiliary 
COGRAM 70: Only capitalise proper nouns and technical terms. [S-CORR] 

Control 
COGRAM 70: Only capitalise proper nouns and technical terms. [S-CORR] 

Auxiliary (N) --> ? [S-DIAG] 

RUN2 

CORRECTION: 
Interchange auxiliary control. 

DIAGNOSIS: 
Exchange auxiliary control ;;Exchange analysed as VERB, the whole as an imperative S 

Exchange auxiliary control 
COGRAM 125: Full stop at end of sentence. [S-CORR] 

Exchange (V) --> interchange [S-CORR] 

In the first run, capitalisation is undone for two words (auxiliary and control). In the 

second run, it shows that the different spelling results in a different analysis: exchange is 

now analysed as a verb, and corrected to interchange given the bilingual dictionary entry for 

it; moreover, a full stop is added to the sentence. 

3.5 Bad/phrasal analysis 

Most cases of divergence (28 out of 55, i.e. 50%) are caused by a bad or phrasal analysis. 

Here again, the effects are unpredictable, and we even found cases of circular correction: 

RUN1 

CORRECTION: 
Phase one: 

DIAGNOSIS: 
Phase 1: ;;wrongly analysed as an imperative sentence 

1 
COGRAM 120: One-word numbers in full when surrounded by text. [S-CORR] 

Phase (V)->? [S-DIAG] 

138 



RUN2 

CORRECTION: 
Phase 1: 

DIAGNOSIS: 
Phase one: ;;now analysed correctly as an NP 

one 
COGRAM 122: Use numbers for part numbers. [S-CORR] 

The first run corrects Phase 1 (wrongly analysed) to Phase one; the second run corrects 

Phase one (now analysed correctly) to Phase 1. 

As to phrasal analysis, some final remarks are in order. First, non-convergence is not always 

bad, as is witnessed by the following case of phrasal analysis: the first run did not yield an 

overall sentence analysis, but still a correction was done (replacing “...” by and so on). The 

second run did find an analysis for the sentence, and yielded two useful error messages. 

RUN1 

CORRECTION: 
Measurements (number of accepted calls by an operator, and so on ) 

PARTIAL DIAGNOSIS: 
Measurements (number of accepted calls by an operator,...) 

COGRAM 127: Use “and so on”, not “...”. [S-CORR] 

RUN2 

CORRECTION: 
Measurements (number of accepted calls by an operator, and so on ) 

DIAGNOSIS: 
Measurements (number of accepted calls by an operator, and so on ) 

(number of accepted calls by an operator, and so on ) 
COGRAM 31: Use parentheses only to enclose abbreviations. [S-DIAG] 

number 
COGRAM 73 74: “a”/ “an” for non-specific reference; “the” for specific reference. 

[S-DIAG] 

Of the 283 sentences with correction, 49 were cases of phrasal analysis. Of these 49, 29 

remained untouched in the second run (i.e. the convergence rate for phrasals is almost 

60%). Although this rate is lower than the overall convergence rate of 84%, we consider it 

139 



still high enough to do automatic correction even in cases where no overall sentence 

analysis is found. 

4. Conclusions and further research 

We have run two tests on SECC, our controlled English application intended to help 

technical writers comply with a controlled grammar and lexicon. The first test was a 

precision/recall test with a real-life test suite, somehow similar to the one done by Wojcik et 

al. for the Boeing BSEC (a comparable application). Goals of this test were: to find weak 

spots in the application (critical components that possibly degrade system performance), and 

to get an idea of the optimal performance the system can attain (viz. 95% precision and 

recall). The second test was a newly devised convergence test checking whether SECC 

leaves its proposed sentence corrections untouched upon resubmission. The fact that we did 

not find 100% convergence (we currently attain around 80%) shows that this kind of test is 

certainly useful. As with the precision/recall test, the convergence test pointed out several 

aspects of the system that can further be improved (grammar and lexicon components, their 

interactions, and so on). From both tests it emerged that an accurate, rich and robust 

English analysis component is the key to a maximally successful grammar checking and 

correcting application. For SECC, an improved version of the Metal® MT English analysis 

is currently being worked on. It will be interesting to redo our tests with this improved 

version. 

With this paper we have tried to show the value of elaborate technological evaluation tests 

for controlled language checkers/correctors like SECC. We hope that comparable systems 

will run similar tests (in particular the convergence test), so that new lessons can be learnt 

about ways to improve the quality of the applications in this promising subarea of NLP. 

References 

Adriaens, G. (1994a) - The LRE SECC Project: Simplified English Grammar and 
Style Correction in an MT Framework. In Proceedings of the 1st Language 
Engineering Convention (Paris), 1-8. 

Adriaens, G. (1994b) - Simplified English Grammar and Style Correction in an MT 
Framework: The LRE SECC Project. In Proceedings of the 16th 
Conference on Translating and the Computer (London), 78-88. Also in Aslib 
Proceedings, 47 (3), March 1995, 73-82. 

140 



Ravin, Y. (1993) - Grammar Errors and Style Weaknesses in a Text-Critiquing 
System. In K. Jensen, J.E. Heidorn and S.D. Richardson (eds), Natural 
Language Processing: The PLNLP Approach. Kluwer Academic Publishers, 
Boston, 65-76. 

Richardson, S.D. and L. Braden-Harder (1993) - The Experience of Developing a 
Large-Scale Natural Language Processing System: Critique. In K. Jensen, J.E. 
Heidorn and S.D. Richardson (eds), Natural Language Processing: The PLNLP 
Approach. Kluwer Academic Publishers, Boston, 77-89. 

Steen, G.J. van der, and Dijenborg, B. (1992) - Linguistic Engineering: Tools and 
Products. In Proceedings of the Twente Workshop on Language Technology 2, 
University of Twente. 

Wojcik, R.H., Hoard, J.E. and Holzhauser, K.C. (1990) - The Boeing Simplified 
English Checker. In Proceedings of the International Conference on Human- 
Machine Interaction and Artificial Intelligence in Aeronautics and Space. 
Toulouse, Centre d’Etudes et de Recherches de Toulouse, 43-57. 

Wojcik, R. H., Harrison, P. and Bremer, J. (1993) - Using Bracketed Parses to 
Evaluate a Grammar Checking Application. In Proceedings of ACL93, 38-45. 

141 


