Computational Linguistics, Volume 45, Issue 3 - September 2019

Anthology ID:
Cambridge, MA
MIT Press
Bib Export formats:

pdf bib
Contextualized Translations of Phrasal Verbs with Distributional Compositional Semantics and Monolingual Corpora
Pablo Gamallo | Susana Sotelo | José Ramom Pichel | Mikel Artetxe

This article describes a compositional distributional method to generate contextualized senses of words and identify their appropriate translations in the target language using monolingual corpora. Word translation is modeled in the same way as contextualization of word meaning, but in a bilingual vector space. The contextualization of meaning is carried out by means of distributional composition within a structured vector space with syntactic dependencies, and the bilingual space is created by means of transfer rules and a bilingual dictionary. A phrase in the source language, consisting of a head and a dependent, is translated into the target language by selecting both the nearest neighbor of the head given the dependent, and the nearest neighbor of the dependent given the head. This process is expanded to larger phrases by means of incremental composition. Experiments were performed on English and Spanish monolingual corpora in order to translate phrasal verbs in context. A new bilingual data set to evaluate strategies aimed at translating phrasal verbs in restricted syntactic domains has been created and released.

pdf bib
Watset: Local-Global Graph Clustering with Applications in Sense and Frame Induction
Dmitry Ustalov | Alexander Panchenko | Chris Biemann | Simone Paolo Ponzetto

We present a detailed theoretical and computational analysis of the Watset meta-algorithm for fuzzy graph clustering, which has been found to be widely applicable in a variety of domains. This algorithm creates an intermediate representation of the input graph, which reflects the “ambiguity” of its nodes. Then, it uses hard clustering to discover clusters in this “disambiguated” intermediate graph. After outlining the approach and analyzing its computational complexity, we demonstrate that Watset shows competitive results in three applications: unsupervised synset induction from a synonymy graph, unsupervised semantic frame induction from dependency triples, and unsupervised semantic class induction from a distributional thesaurus. Our algorithm is generic and can also be applied to other networks of linguistic data.

pdf bib
Evaluating Computational Language Models with Scaling Properties of Natural Language
Shuntaro Takahashi | Kumiko Tanaka-Ishii

In this article, we evaluate computational models of natural language with respect to the universal statistical behaviors of natural language. Statistical mechanical analyses have revealed that natural language text is characterized by scaling properties, which quantify the global structure in the vocabulary population and the long memory of a text. We study whether five scaling properties (given by Zipf’s law, Heaps’ law, Ebeling’s method, Taylor’s law, and long-range correlation analysis) can serve for evaluation of computational models. Specifically, we test n-gram language models, a probabilistic context-free grammar, language models based on Simon/Pitman-Yor processes, neural language models, and generative adversarial networks for text generation. Our analysis reveals that language models based on recurrent neural networks with a gating mechanism (i.e., long short-term memory; a gated recurrent unit; and quasi-recurrent neural networks) are the only computational models that can reproduce the long memory behavior of natural language. Furthermore, through comparison with recently proposed model-based evaluation methods, we find that the exponent of Taylor’s law is a good indicator of model quality.

Taking MT Evaluation Metrics to Extremes: Beyond Correlation with Human Judgments
Marina Fomicheva | Lucia Specia

Automatic Machine Translation (MT) evaluation is an active field of research, with a handful of new metrics devised every year. Evaluation metrics are generally benchmarked against manual assessment of translation quality, with performance measured in terms of overall correlation with human scores. Much work has been dedicated to the improvement of evaluation metrics to achieve a higher correlation with human judgments. However, little insight has been provided regarding the weaknesses and strengths of existing approaches and their behavior in different settings. In this work we conduct a broad meta-evaluation study of the performance of a wide range of evaluation metrics focusing on three major aspects. First, we analyze the performance of the metrics when faced with different levels of translation quality, proposing a local dependency measure as an alternative to the standard, global correlation coefficient. We show that metric performance varies significantly across different levels of MT quality: Metrics perform poorly when faced with low-quality translations and are not able to capture nuanced quality distinctions. Interestingly, we show that evaluating low-quality translations is also more challenging for humans. Second, we show that metrics are more reliable when evaluating neural MT than the traditional statistical MT systems. Finally, we show that the difference in the evaluation accuracy for different metrics is maintained even if the gold standard scores are based on different criteria.

Modeling Language Variation and Universals: A Survey on Typological Linguistics for Natural Language Processing
Edoardo Maria Ponti | Helen O’Horan | Yevgeni Berzak | Ivan Vulić | Roi Reichart | Thierry Poibeau | Ekaterina Shutova | Anna Korhonen

Linguistic typology aims to capture structural and semantic variation across the world’s languages. A large-scale typology could provide excellent guidance for multilingual Natural Language Processing (NLP), particularly for languages that suffer from the lack of human labeled resources. We present an extensive literature survey on the use of typological information in the development of NLP techniques. Our survey demonstrates that to date, the use of information in existing typological databases has resulted in consistent but modest improvements in system performance. We show that this is due to both intrinsic limitations of databases (in terms of coverage and feature granularity) and under-utilization of the typological features included in them. We advocate for a new approach that adapts the broad and discrete nature of typological categories to the contextual and continuous nature of machine learning algorithms used in contemporary NLP. In particular, we suggest that such an approach could be facilitated by recent developments in data-driven induction of typological knowledge.