Proceedings of the 3rd Wordplay: When Language Meets Games Workshop (Wordplay 2022)

Marc-Alexandre Côté, Xingdi Yuan, Prithviraj Ammanabrolu (Editors)

Anthology ID:
Seattle, United States
Association for Computational Linguistics
Bib Export formats:

pdf bib
Proceedings of the 3rd Wordplay: When Language Meets Games Workshop (Wordplay 2022)
Marc-Alexandre Côté | Xingdi Yuan | Prithviraj Ammanabrolu

pdf bib
A Systematic Survey of Text Worlds as Embodied Natural Language Environments
Peter Jansen

Text Worlds are virtual environments for embodied agents that, unlike 2D or 3D environments, are rendered exclusively using textual descriptions. These environments offer an alternative to higher-fidelity 3D environments due to their low barrier to entry, providing the ability to study semantics, compositional inference, and other high-level tasks with rich action spaces while controlling for perceptual input. This systematic survey outlines recent developments in tooling, environments, and agent modeling for Text Worlds, while examining recent trends in knowledge graphs, common sense reasoning, transfer learning of Text World performance to higher-fidelity environments, as well as near-term development targets that, once achieved, make Text Worlds an attractive general research paradigm for natural language processing.

pdf bib
A Minimal Computational Improviser Based on Oral Thought
Nick Montfort | Sebastian Bartlett Fernandez

A prototype system for playing a minimal improvisational game with one or more human or computer players is discussed. The game, Chain Reaction, has players collectively build a chain of word pairs or solid compounds. With a basis in oral culture, it emphasizes memory and rapid improvisation. Chains are only locally coherent, so absurdity and humor increases during play. While it is trivial to develop a computer player using textual corpora and literature-culture concepts, our approach is unique in that we have grounded our work in the principles of oral culture according to Walter Ong, an early scholar of orature. We show how a simple computer model can be designed to embody many aspects of oral poetics as theorized by Ong, suggesting design directions for other work in oral improvisation and poetics. The opportunities for own our system’s further development include creating culturally specific automated players and situating play in different temporal, physical, and social contexts.

Craft an Iron Sword: Dynamically Generating Interactive Game Characters by Prompting Large Language Models Tuned on Code
Ryan Volum | Sudha Rao | Michael Xu | Gabriel DesGarennes | Chris Brockett | Benjamin Van Durme | Olivia Deng | Akanksha Malhotra | Bill Dolan

Non-Player Characters (NPCs) significantly enhance the player experience in many games. Historically, players’ interactions with NPCs have tended to be highly scripted, to be limited to natural language responses to be selected by the player, and to not involve dynamic change in game state. In this work, we demonstrate that use of a few example conversational prompts can power a conversational agent to generate both natural language and novel code. This approach can permit development of NPCs with which players can have grounded conversations that are free-form and less repetitive. We demonstrate our approach using OpenAI Codex (GPT-3 finetuned on GitHub), with Minecraft game development as our test bed. We show that with a few example prompts, a Codex-based agent can generate novel code, hold multi-turn conversations and answer questions about structured data. We evaluate this application using experienced gamers in a Minecraft realm and provide analysis of failure cases and suggest possible directions for solutions.

A Sequence Modelling Approach to Question Answering in Text-Based Games
Gregory Furman | Edan Toledo | Jonathan Shock | Jan Buys

Interactive Question Answering (IQA) requires an intelligent agent to interact with a dynamic environment in order to gather information necessary to answer a question. IQA tasks have been proposed as means of training systems to develop language or visual comprehension abilities. To this end, the Question Answering with Interactive Text (QAit) task was created to produce and benchmark interactive agents capable of seeking information and answering questions in unseen environments. While prior work has exclusively focused on IQA as a reinforcement learning problem, such methods suffer from low sample efficiency and poor accuracy in zero-shot evaluation. In this paper, we propose the use of the recently proposed Decision Transformer architecture to provide improvements upon prior baselines. By utilising a causally masked GPT-2 Transformer for command generation and a BERT model for question answer prediction, we show that the Decision Transformer achieves performance greater than or equal to current state-of-the-art RL baselines on the QAit task in a sample efficient manner. In addition, these results are achievable by training on sub-optimal random trajectories, therefore not requiring the use of online agents to gather data.

Automatic Exploration of Textual Environments with Language-Conditioned Autotelic Agents
Laetitia Teodorescu | Xingdi Yuan | Marc-Alexandre Côté | Pierre-Yves Oudeyer

The purpose of this extended abstract is to discuss the possible fruitful interactions between intrinsically-motivated language-conditioned agents and textual environments. We define autotelic agents as agents able to set their own goals. We identify desirable properties of textual nenvironments that makes them a good testbed for autotelic agents. We them list drivers of exploration for such agents that would allow them to achieve large repertoires of skills in these environments, enabling such agents to be repurposed for solving the benchmarks implemented in textual environments. We then discuss challenges and further perspectives brought about by this interaction.