Zhanyu Ma


HCLD: A Hierarchical Framework for Zero-shot Cross-lingual Dialogue System
Zhanyu Ma | Jian Ye | Xurui Yang | Jianfeng Liu
Proceedings of the 29th International Conference on Computational Linguistics

Recently, many task-oriented dialogue systems need to serve users in different languages. However, it is time-consuming to collect enough data of each language for training. Thus, zero-shot adaptation of cross-lingual task-oriented dialog systems has been studied. Most of existing methods consider the word-level alignments to conduct two main tasks for task-oriented dialogue system, i.e., intent detection and slot filling, and they rarely explore the dependency relations among these two tasks. In this paper, we propose a hierarchical framework to classify the pre-defined intents in the high-level and fulfill slot filling under the guidance of intent in the low-level. Particularly, we incorporate sentence-level alignment among different languages to enhance the performance of intent detection. The extensive experiments report that our proposed method achieves the SOTA performance on a public task-oriented dialog dataset.


Dual Graph Convolutional Networks for Aspect-based Sentiment Analysis
Ruifan Li | Hao Chen | Fangxiang Feng | Zhanyu Ma | Xiaojie Wang | Eduard Hovy
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Aspect-based sentiment analysis is a fine-grained sentiment classification task. Recently, graph neural networks over dependency trees have been explored to explicitly model connections between aspects and opinion words. However, the improvement is limited due to the inaccuracy of the dependency parsing results and the informal expressions and complexity of online reviews. To overcome these challenges, in this paper, we propose a dual graph convolutional networks (DualGCN) model that considers the complementarity of syntax structures and semantic correlations simultaneously. Particularly, to alleviate dependency parsing errors, we design a SynGCN module with rich syntactic knowledge. To capture semantic correlations, we design a SemGCN module with self-attention mechanism. Furthermore, we propose orthogonal and differential regularizers to capture semantic correlations between words precisely by constraining attention scores in the SemGCN module. The orthogonal regularizer encourages the SemGCN to learn semantically correlated words with less overlap for each word. The differential regularizer encourages the SemGCN to learn semantic features that the SynGCN fails to capture. Experimental results on three public datasets show that our DualGCN model outperforms state-of-the-art methods and verify the effectiveness of our model.