Yuxi Xie


Exploring Question-Specific Rewards for Generating Deep Questions
Yuxi Xie | Liangming Pan | Dongzhe Wang | Min-Yen Kan | Yansong Feng
Proceedings of the 28th International Conference on Computational Linguistics

Recent question generation (QG) approaches often utilize the sequence-to-sequence framework (Seq2Seq) to optimize the log likelihood of ground-truth questions using teacher forcing. However, this training objective is inconsistent with actual question quality, which is often reflected by certain global properties such as whether the question can be answered by the document. As such, we directly optimize for QG-specific objectives via reinforcement learning to improve question quality. We design three different rewards that target to improve the fluency, relevance, and answerability of generated questions. We conduct both automatic and human evaluations in addition to thorough analysis to explore the effect of each QG-specific reward. We find that optimizing on question-specific rewards generally leads to better performance in automatic evaluation metrics. However, only the rewards that correlate well with human judgement (e.g., relevance) lead to real improvement in question quality. Optimizing for the others, especially answerability, introduces incorrect bias to the model, resulting in poorer question quality. The code is publicly available at https://github.com/YuxiXie/RL-for-Question-Generation.

Semantic Graphs for Generating Deep Questions
Liangming Pan | Yuxi Xie | Yansong Feng | Tat-Seng Chua | Min-Yen Kan
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

This paper proposes the problem of Deep Question Generation (DQG), which aims to generate complex questions that require reasoning over multiple pieces of information about the input passage. In order to capture the global structure of the document and facilitate reasoning, we propose a novel framework that first constructs a semantic-level graph for the input document and then encodes the semantic graph by introducing an attention-based GGNN (Att-GGNN). Afterward, we fuse the document-level and graph-level representations to perform joint training of content selection and question decoding. On the HotpotQA deep-question centric dataset, our model greatly improves performance over questions requiring reasoning over multiple facts, leading to state-of-the-art performance. The code is publicly available at https://github.com/WING-NUS/SG-Deep-Question-Generation.