Youxuan Jiang


A Novel Workflow for Accurately and Efficiently Crowdsourcing Predicate Senses and Argument Labels
Youxuan Jiang | Huaiyu Zhu | Jonathan K. Kummerfeld | Yunyao Li | Walter Lasecki
Findings of the Association for Computational Linguistics: EMNLP 2020

Resources for Semantic Role Labeling (SRL) are typically annotated by experts at great expense. Prior attempts to develop crowdsourcing methods have either had low accuracy or required substantial expert annotation. We propose a new multi-stage crowd workflow that substantially reduces expert involvement without sacrificing accuracy. In particular, we introduce a unique filter stage based on the key observation that crowd workers are able to almost perfectly filter out incorrect options for labels. Our three-stage workflow produces annotations with 95% accuracy for predicate labels and 93% for argument labels, which is comparable to expert agreement. Compared to prior work on crowdsourcing for SRL, we decrease expert effort by 4x, from 56% to 14% of cases. Our approach enables more scalable annotation of SRL, and could enable annotation of NLP tasks that have previously been considered too complex to effectively crowdsource.


CoSQL: A Conversational Text-to-SQL Challenge Towards Cross-Domain Natural Language Interfaces to Databases
Tao Yu | Rui Zhang | Heyang Er | Suyi Li | Eric Xue | Bo Pang | Xi Victoria Lin | Yi Chern Tan | Tianze Shi | Zihan Li | Youxuan Jiang | Michihiro Yasunaga | Sungrok Shim | Tao Chen | Alexander Fabbri | Zifan Li | Luyao Chen | Yuwen Zhang | Shreya Dixit | Vincent Zhang | Caiming Xiong | Richard Socher | Walter Lasecki | Dragomir Radev
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

We present CoSQL, a corpus for building cross-domain, general-purpose database (DB) querying dialogue systems. It consists of 30k+ turns plus 10k+ annotated SQL queries, obtained from a Wizard-of-Oz (WOZ) collection of 3k dialogues querying 200 complex DBs spanning 138 domains. Each dialogue simulates a real-world DB query scenario with a crowd worker as a user exploring the DB and a SQL expert retrieving answers with SQL, clarifying ambiguous questions, or otherwise informing of unanswerable questions. When user questions are answerable by SQL, the expert describes the SQL and execution results to the user, hence maintaining a natural interaction flow. CoSQL introduces new challenges compared to existing task-oriented dialogue datasets: (1) the dialogue states are grounded in SQL, a domain-independent executable representation, instead of domain-specific slot value pairs, and (2) because testing is done on unseen databases, success requires generalizing to new domains. CoSQL includes three tasks: SQL-grounded dialogue state tracking, response generation from query results, and user dialogue act prediction. We evaluate a set of strong baselines for each task and show that CoSQL presents significant challenges for future research. The dataset, baselines, and leaderboard will be released at


Effective Crowdsourcing for a New Type of Summarization Task
Youxuan Jiang | Catherine Finegan-Dollak | Jonathan K. Kummerfeld | Walter Lasecki
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)

Most summarization research focuses on summarizing the entire given text, but in practice readers are often interested in only one aspect of the document or conversation. We propose targeted summarization as an umbrella category for summarization tasks that intentionally consider only parts of the input data. This covers query-based summarization, update summarization, and a new task we propose where the goal is to summarize a particular aspect of a document. However, collecting data for this new task is hard because directly asking annotators (e.g., crowd workers) to write summaries leads to data with low accuracy when there are a large number of facts to include. We introduce a novel crowdsourcing workflow, Pin-Refine, that allows us to collect high-quality summaries for our task, a necessary step for the development of automatic systems.


Understanding Task Design Trade-offs in Crowdsourced Paraphrase Collection
Youxuan Jiang | Jonathan K. Kummerfeld | Walter S. Lasecki
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Linguistically diverse datasets are critical for training and evaluating robust machine learning systems, but data collection is a costly process that often requires experts. Crowdsourcing the process of paraphrase generation is an effective means of expanding natural language datasets, but there has been limited analysis of the trade-offs that arise when designing tasks. In this paper, we present the first systematic study of the key factors in crowdsourcing paraphrase collection. We consider variations in instructions, incentives, data domains, and workflows. We manually analyzed paraphrases for correctness, grammaticality, and linguistic diversity. Our observations provide new insight into the trade-offs between accuracy and diversity in crowd responses that arise as a result of task design, providing guidance for future paraphrase generation procedures.