Yoshinari Fujinuma


Match the Script, Adapt if Multilingual: Analyzing the Effect of Multilingual Pretraining on Cross-lingual Transferability
Yoshinari Fujinuma | Jordan Boyd-Graber | Katharina Kann
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Pretrained multilingual models enable zero-shot learning even for unseen languages, and that performance can be further improved via adaptation prior to finetuning. However, it is unclear how the number of pretraining languages influences a model’s zero-shot learning for languages unseen during pretraining. To fill this gap, we ask the following research questions: (1) How does the number of pretraining languages influence zero-shot performance on unseen target languages? (2) Does the answer to that question change with model adaptation? (3) Do the findings for our first question change if the languages used for pretraining are all related? Our experiments on pretraining with related languages indicate that choosing a diverse set of languages is crucial. Without model adaptation, surprisingly, increasing the number of pretraining languages yields better results up to adding related languages, after which performance plateaus.In contrast, with model adaptation via continued pretraining, pretraining on a larger number of languages often gives further improvement, suggesting that model adaptation is crucial to exploit additional pretraining languages.


Semi-Supervised Joint Estimation of Word and Document Readability
Yoshinari Fujinuma | Masato Hagiwara
Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-15)

Readability or difficulty estimation of words and documents has been investigated independently in the literature, often assuming the existence of extensive annotated resources for the other. Motivated by our analysis showing that there is a recursive relationship between word and document difficulty, we propose to jointly estimate word and document difficulty through a graph convolutional network (GCN) in a semi-supervised fashion. Our experimental results reveal that the GCN-based method can achieve higher accuracy than strong baselines, and stays robust even with a smaller amount of labeled data.


Why Overfitting Isn’t Always Bad: Retrofitting Cross-Lingual Word Embeddings to Dictionaries
Mozhi Zhang | Yoshinari Fujinuma | Michael J. Paul | Jordan Boyd-Graber
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Cross-lingual word embeddings (CLWE) are often evaluated on bilingual lexicon induction (BLI). Recent CLWE methods use linear projections, which underfit the training dictionary, to generalize on BLI. However, underfitting can hinder generalization to other downstream tasks that rely on words from the training dictionary. We address this limitation by retrofitting CLWE to the training dictionary, which pulls training translation pairs closer in the embedding space and overfits the training dictionary. This simple post-processing step often improves accuracy on two downstream tasks, despite lowering BLI test accuracy. We also retrofit to both the training dictionary and a synthetic dictionary induced from CLWE, which sometimes generalizes even better on downstream tasks. Our results confirm the importance of fully exploiting training dictionary in downstream tasks and explains why BLI is a flawed CLWE evaluation.


A Resource-Free Evaluation Metric for Cross-Lingual Word Embeddings Based on Graph Modularity
Yoshinari Fujinuma | Jordan Boyd-Graber | Michael J. Paul
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Cross-lingual word embeddings encode the meaning of words from different languages into a shared low-dimensional space. An important requirement for many downstream tasks is that word similarity should be independent of language—i.e., word vectors within one language should not be more similar to each other than to words in another language. We measure this characteristic using modularity, a network measurement that measures the strength of clusters in a graph. Modularity has a moderate to strong correlation with three downstream tasks, even though modularity is based only on the structure of embeddings and does not require any external resources. We show through experiments that modularity can serve as an intrinsic validation metric to improve unsupervised cross-lingual word embeddings, particularly on distant language pairs in low-resource settings.


Substring Frequency Features for Segmentation of Japanese Katakana Words with Unlabeled Corpora
Yoshinari Fujinuma | Alvin Grissom II
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Word segmentation is crucial in natural language processing tasks for unsegmented languages. In Japanese, many out-of-vocabulary words appear in the phonetic syllabary katakana, making segmentation more difficult due to the lack of clues found in mixed script settings. In this paper, we propose a straightforward approach based on a variant of tf-idf and apply it to the problem of word segmentation in Japanese. Even though our method uses only an unlabeled corpus, experimental results show that it achieves performance comparable to existing methods that use manually labeled corpora. Furthermore, it improves performance of simple word segmentation models trained on a manually labeled corpus.


Distant-supervised Language Model for Detecting Emotional Upsurge on Twitter
Yoshinari Fujinuma | Hikaru Yokono | Pascual Martínez-Gómez | Akiko Aizawa
Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation