Yongyu Mu


Improved Knowledge Distillation for Pre-trained Language Models via Knowledge Selection
Chenglong Wang | Yi Lu | Yongyu Mu | Yimin Hu | Tong Xiao | Jingbo Zhu
Findings of the Association for Computational Linguistics: EMNLP 2022

Knowledge distillation addresses the problem of transferring knowledge from a teacher model to a student model.In this process, we typically have multiple types of knowledge extracted from the teacher model.The problem is to make full use of them to train the student model.Our preliminary study shows that: (1) not all of the knowledge is necessary for learning a good student model, and (2) knowledge distillation can benefit from certain knowledge at different training steps.In response to these, we propose an actor-critic approach to selecting appropriate knowledge to transfer during the process of knowledge distillation.In addition, we offer a refinement of the training algorithm to ease the computational burden.Experimental results on the GLUE datasets show that our method outperforms several strong knowledge distillation baselines significantly.


The NiuTrans Machine Translation Systems for WMT21
Shuhan Zhou | Tao Zhou | Binghao Wei | Yingfeng Luo | Yongyu Mu | Zefan Zhou | Chenglong Wang | Xuanjun Zhou | Chuanhao Lv | Yi Jing | Laohu Wang | Jingnan Zhang | Canan Huang | Zhongxiang Yan | Chi Hu | Bei Li | Tong Xiao | Jingbo Zhu
Proceedings of the Sixth Conference on Machine Translation

This paper describes NiuTrans neural machine translation systems of the WMT 2021 news translation tasks. We made submissions to 9 language directions, including English2Chinese, Japanese, Russian, Icelandic and English2Hausa tasks. Our primary systems are built on several effective variants of Transformer, e.g., Transformer-DLCL, ODE-Transformer. We also utilize back-translation, knowledge distillation, post-ensemble, and iterative fine-tuning techniques to enhance the model performance further.

The NiuTrans System for the WMT 2021 Efficiency Task
Chenglong Wang | Chi Hu | Yongyu Mu | Zhongxiang Yan | Siming Wu | Yimin Hu | Hang Cao | Bei Li | Ye Lin | Tong Xiao | Jingbo Zhu
Proceedings of the Sixth Conference on Machine Translation

This paper describes the NiuTrans system for the WMT21 translation efficiency task. Following last year’s work, we explore various techniques to improve the efficiency while maintaining translation quality. We investigate the combinations of lightweight Transformer architectures and knowledge distillation strategies. Also, we improve the translation efficiency with graph optimization, low precision, dynamic batching, and parallel pre/post-processing. Putting these together, our system can translate 247,000 words per second on an NVIDIA A100, being 3× faster than our last year’s system. Our system is the fastest and has the lowest memory consumption on the GPU-throughput track. The code, model, and pipeline will be available at NiuTrans.NMT.


The NiuTrans Machine Translation Systems for WMT20
Yuhao Zhang | Ziyang Wang | Runzhe Cao | Binghao Wei | Weiqiao Shan | Shuhan Zhou | Abudurexiti Reheman | Tao Zhou | Xin Zeng | Laohu Wang | Yongyu Mu | Jingnan Zhang | Xiaoqian Liu | Xuanjun Zhou | Yinqiao Li | Bei Li | Tong Xiao | Jingbo Zhu
Proceedings of the Fifth Conference on Machine Translation

This paper describes NiuTrans neural machine translation systems of the WMT20 news translation tasks. We participated in Japanese<->English, English->Chinese, Inuktitut->English and Tamil->English total five tasks and rank first in Japanese<->English both sides. We mainly utilized iterative back-translation, different depth and widen model architectures, iterative knowledge distillation and iterative fine-tuning. And we find that adequately widened and deepened the model simultaneously, the performance will significantly improve. Also, iterative fine-tuning strategy we implemented is effective during adapting domain. For Inuktitut->English and Tamil->English tasks, we built multilingual models separately and employed pretraining word embedding to obtain better performance.