Yizhi Li


2022

pdf
HERB: Measuring Hierarchical Regional Bias in Pre-trained Language Models
Yizhi Li | Ge Zhang | Bohao Yang | Chenghua Lin | Anton Ragni | Shi Wang | Jie Fu
Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022

Fairness has become a trending topic in natural language processing (NLP) and covers biases targeting certain social groups such as genders and religions. Yet regional bias, another long-standing global discrimination problem, remains unexplored still. Consequently, we intend to provide a study to analyse the regional bias learned by the pre-trained language models (LMs) that are broadly used in NLP tasks. While verifying the existence of regional bias in LMs, we find that the biases on regional groups can be largely affected by the corresponding geographical clustering. We accordingly propose a hierarchical regional bias evaluation method (HERB) utilising the information from the sub-region clusters to quantify the bias in the pre-trained LMs. Experiments show that our hierarchical metric can effectively evaluate the regional bias with regard to comprehensive topics and measure the potential regional bias that can be propagated to downstream tasks. Our codes are available at https://github.com/Bernard-Yang/HERB.

pdf
TranSHER: Translating Knowledge Graph Embedding with Hyper-Ellipsoidal Restriction
Yizhi Li | Wei Fan | Chao Liu | Chenghua Lin | Jiang Qian
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Knowledge graph embedding methods are important for the knowledge graph completion (or link prediction) task.One state-of-the-art method, PairRE, leverages two separate vectors to model complex relations (i.e., 1-to-N, N-to-1, and N-to-N) in knowledge graphs. However, such a method strictly restricts entities on the hyper-ellipsoid surfaces which limits the optimization of entity distribution, leading to suboptimal performance of knowledge graph completion. To address this issue, we propose a novel score function TranSHER, which leverages relation-specific translations between head and tail entities to relax the constraint of hyper-ellipsoid restrictions. By introducing an intuitive and simple relation-specific translation, TranSHER can provide more direct guidance on optimization and capture more semantic characteristics of entities with complex relations. Experimental results show that TranSHER achieves state-of-the-art performance on link prediction and generalizes well to datasets in different domains and scales. Our codes are public available athttps://github.com/yizhilll/TranSHER.