Thalia Wheatley


Linguistic Complexity Loss in Text-Based Therapy
Jason Wei | Kelly Finn | Emma Templeton | Thalia Wheatley | Soroush Vosoughi
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The complexity loss paradox, which posits that individuals suffering from disease exhibit surprisingly predictable behavioral dynamics, has been observed in a variety of both human and animal physiological systems. The recent advent of online text-based therapy presents a new opportunity to analyze the complexity loss paradox in a novel operationalization: linguistic complexity loss in text-based therapy conversations. In this paper, we analyze linguistic complexity correlates of mental health in the online therapy messages sent between therapists and 7,170 clients who provided 30,437 corresponding survey responses on their anxiety. We found that when clients reported more anxiety, they showed reduced lexical diversity as estimated by the moving average type-token ratio. Therapists, on the other hand, used language of higher reading difficulty, syntactic complexity, and age of acquisition when clients were more anxious. Finally, we found that clients, and to an even greater extent, therapists, exhibited consistent levels of many linguistic complexity measures. These results demonstrate how linguistic analysis of text-based communication can be leveraged as a marker for anxiety, an exciting prospect in a time of both increased online communication and increased mental health issues.