Tanmay Parekh


Politeness Transfer: A Tag and Generate Approach
Aman Madaan | Amrith Setlur | Tanmay Parekh | Barnabas Poczos | Graham Neubig | Yiming Yang | Ruslan Salakhutdinov | Alan W Black | Shrimai Prabhumoye
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

This paper introduces a new task of politeness transfer which involves converting non-polite sentences to polite sentences while preserving the meaning. We also provide a dataset of more than 1.39 instances automatically labeled for politeness to encourage benchmark evaluations on this new task. We design a tag and generate pipeline that identifies stylistic attributes and subsequently generates a sentence in the target style while preserving most of the source content. For politeness as well as five other transfer tasks, our model outperforms the state-of-the-art methods on automatic metrics for content preservation, with a comparable or better performance on style transfer accuracy. Additionally, our model surpasses existing methods on human evaluations for grammaticality, meaning preservation and transfer accuracy across all the six style transfer tasks. The data and code is located at https://github.com/tag-and-generate.

Understanding Linguistic Accommodation in Code-Switched Human-Machine Dialogues
Tanmay Parekh | Emily Ahn | Yulia Tsvetkov | Alan W Black
Proceedings of the 24th Conference on Computational Natural Language Learning

Code-switching is a ubiquitous phenomenon in multilingual communities. Natural language technologies that wish to communicate like humans must therefore adaptively incorporate code-switching techniques when they are deployed in multilingual settings. To this end, we propose a Hindi-English human-machine dialogue system that elicits code-switching conversations in a controlled setting. It uses different code-switching agent strategies to understand how users respond and accommodate to the agent’s language choice. Through this system, we collect and release a new dataset CommonDost, comprising of 439 human-machine multilingual conversations. We adapt pre-defined metrics to discover linguistic accommodation from users to agents. Finally, we compare these dialogues with Spanish-English dialogues collected in a similar setting, and analyze the impact of linguistic and socio-cultural factors on code-switching patterns across the two language pairs.


Code-switched Language Models Using Dual RNNs and Same-Source Pretraining
Saurabh Garg | Tanmay Parekh | Preethi Jyothi
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

This work focuses on building language models (LMs) for code-switched text. We propose two techniques that significantly improve these LMs: 1) A novel recurrent neural network unit with dual components that focus on each language in the code-switched text separately 2) Pretraining the LM using synthetic text from a generative model estimated using the training data. We demonstrate the effectiveness of our proposed techniques by reporting perplexities on a Mandarin-English task and derive significant reductions in perplexity.