Samuel Fraiberger


Multilingual Detection of Personal Employment Status on Twitter
Manuel Tonneau | Dhaval Adjodah | Joao Palotti | Nir Grinberg | Samuel Fraiberger
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Detecting disclosures of individuals’ employment status on social media can provide valuable information to match job seekers with suitable vacancies, offer social protection, or measure labor market flows. However, identifying such personal disclosures is a challenging task due to their rarity in a sea of social media content and the variety of linguistic forms used to describe them. Here, we examine three Active Learning (AL) strategies in real-world settings of extreme class imbalance, and identify five types of disclosures about individuals’ employment status (e.g. job loss) in three languages using BERT-based classification models. Our findings show that, even under extreme imbalance settings, a small number of AL iterations is sufficient to obtain large and significant gains in precision, recall, and diversity of results compared to a supervised baseline with the same number of labels. We also find that no AL strategy consistently outperforms the rest. Qualitative analysis suggests that AL helps focus the attention mechanism of BERT on core terms and adjust the boundaries of semantic expansion, highlighting the importance of interpretable models to provide greater control and visibility into this dynamic learning process.


Identifying Predictive Causal Factors from News Streams
Ananth Balashankar | Sunandan Chakraborty | Samuel Fraiberger | Lakshminarayanan Subramanian
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

We propose a new framework to uncover the relationship between news events and real world phenomena. We present the Predictive Causal Graph (PCG) which allows to detect latent relationships between events mentioned in news streams. This graph is constructed by measuring how the occurrence of a word in the news influences the occurrence of another (set of) word(s) in the future. We show that PCG can be used to extract latent features from news streams, outperforming other graph-based methods in prediction error of 10 stock price time series for 12 months. We then extended PCG to be applicable for longer time windows by allowing time-varying factors, leading to stock price prediction error rates between 1.5% and 5% for about 4 years. We then manually validated PCG, finding that 67% of the causation semantic frame arguments present in the news corpus were directly connected in the PCG, the remaining being connected through a semantically relevant intermediate node.


News Sentiment and Cross-Country Fluctuations
Samuel Fraiberger
Proceedings of the First Workshop on NLP and Computational Social Science