Sahisnu Mazumder


Semantic Novelty Detection and Characterization in Factual Text Involving Named Entities
Nianzu Ma | Sahisnu Mazumder | Alexander Politowicz | Bing Liu | Eric Robertson | Scott Grigsby
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Much of the existing work on text novelty detection has been studied at the topic level, i.e., identifying whether the topic of a document or a sentence is novel or not. Little work has been done at the fine-grained semantic level (or contextual level). For example, given that we know Elon Musk is the CEO of a technology company, the sentence “Elon Musk acted in the sitcom The Big Bang Theory” is novel and surprising because normally a CEO would not be an actor. Existing topic-based novelty detection methods work poorly on this problem because they do not perform semantic reasoning involving relations between named entities in the text and their background knowledge. This paper proposes an effective model (called PAT-SND) to solve the problem, which can also characterize the novelty. An annotated dataset is also created. Evaluation shows that PAT-SND outperforms 10 baselines by large margins.


FLIN: A Flexible Natural Language Interface for Web Navigation
Sahisnu Mazumder | Oriana Riva
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

AI assistants can now carry out tasks for users by directly interacting with website UIs. Current semantic parsing and slot-filling techniques cannot flexibly adapt to many different websites without being constantly re-trained. We propose FLIN, a natural language interface for web navigation that maps user commands to concept-level actions (rather than low-level UI actions), thus being able to flexibly adapt to different websites and handle their transient nature. We frame this as a ranking problem: given a user command and a webpage, FLIN learns to score the most relevant navigation instruction (involving action and parameter values). To train and evaluate FLIN, we collect a dataset using nine popular websites from three domains. Our results show that FLIN was able to adapt to new websites in a given domain.

Detecting Domain Polarity-Changes of Words in a Sentiment Lexicon
Shuai Wang | Guangyi Lv | Sahisnu Mazumder | Bing Liu
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

Semantic Novelty Detection in Natural Language Descriptions
Nianzu Ma | Alexander Politowicz | Sahisnu Mazumder | Jiahua Chen | Bing Liu | Eric Robertson | Scott Grigsby
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

This paper proposes to study a fine-grained semantic novelty detection task, which can be illustrated with the following example. It is normal that a person walks a dog in the park, but if someone says “A man is walking a chicken in the park”, it is novel. Given a set of natural language descriptions of normal scenes, we want to identify descriptions of novel scenes. We are not aware of any existing work that solves the problem. Although existing novelty or anomaly detection algorithms are applicable, since they are usually topic-based, they perform poorly on our fine-grained semantic novelty detection task. This paper proposes an effective model (called GAT-MA) to solve the problem and also contributes a new dataset. Experimental evaluation shows that GAT-MA outperforms 11 baselines by large margins.


Bayes-enhanced Lifelong Attention Networks for Sentiment Classification
Hao Wang | Shuai Wang | Sahisnu Mazumder | Bing Liu | Yan Yang | Tianrui Li
Proceedings of the 28th International Conference on Computational Linguistics

The classic deep learning paradigm learns a model from the training data of a single task and the learned model is also tested on the same task. This paper studies the problem of learning a sequence of tasks (sentiment classification tasks in our case). After each sentiment classification task is learned, its knowledge is retained to help future task learning. Following this setting, we explore attention neural networks and propose a Bayes-enhanced Lifelong Attention Network (BLAN). The key idea is to exploit the generative parameters of naive Bayes to learn attention knowledge. The learned knowledge from each task is stored in a knowledge base and later used to build lifelong attentions. The constructed lifelong attentions are then used to enhance the attention of the network to help new task learning. Experimental results on product reviews from show the effectiveness of the proposed model.

Entity-Aware Dependency-Based Deep Graph Attention Network for Comparative Preference Classification
Nianzu Ma | Sahisnu Mazumder | Hao Wang | Bing Liu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

This paper studies the task of comparative preference classification (CPC). Given two entities in a sentence, our goal is to classify whether the first (or the second) entity is preferred over the other or no comparison is expressed at all between the two entities. Existing works either do not learn entity-aware representations well and fail to deal with sentences involving multiple entity pairs or use sequential modeling approaches that are unable to capture long-range dependencies between the entities. Some also use traditional machine learning approaches that do not generalize well. This paper proposes a novel Entity-aware Dependency-based Deep Graph Attention Network (ED-GAT) that employs a multi-hop graph attention over a dependency graph sentence representation to leverage both the semantic information from word embeddings and the syntactic information from the dependency graph to solve the problem. Empirical evaluation shows that the proposed model achieves the state-of-the-art performance in comparative preference classification.

A Knowledge-Driven Approach to Classifying Object and Attribute Coreferences in Opinion Mining
Jiahua Chen | Shuai Wang | Sahisnu Mazumder | Bing Liu
Findings of the Association for Computational Linguistics: EMNLP 2020

Classifying and resolving coreferences of objects (e.g., product names) and attributes (e.g., product aspects) in opinionated reviews is crucial for improving the opinion mining performance. However, the task is challenging as one often needs to consider domain-specific knowledge (e.g., iPad is a tablet and has aspect resolution) to identify coreferences in opinionated reviews. Also, compiling a handcrafted and curated domain-specific knowledge base for each domain is very time consuming and arduous. This paper proposes an approach to automatically mine and leverage domain-specific knowledge for classifying objects and attribute coreferences. The approach extracts domain-specific knowledge from unlabeled review data and trains a knowledgeaware neural coreference classification model to leverage (useful) domain knowledge together with general commonsense knowledge for the task. Experimental evaluation on realworld datasets involving five domains (product types) shows the effectiveness of the approach


Lifelong and Interactive Learning of Factual Knowledge in Dialogues
Sahisnu Mazumder | Bing Liu | Shuai Wang | Nianzu Ma
Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue

Dialogue systems are increasingly using knowledge bases (KBs) storing real-world facts to help generate quality responses. However, as the KBs are inherently incomplete and remain fixed during conversation, it limits dialogue systems’ ability to answer questions and to handle questions involving entities or relations that are not in the KB. In this paper, we make an attempt to propose an engine for Continuous and Interactive Learning of Knowledge (CILK) for dialogue systems to give them the ability to continuously and interactively learn and infer new knowledge during conversations. With more knowledge accumulated over time, they will be able to learn better and answer more questions. Our empirical evaluation shows that CILK is promising.


Target-Sensitive Memory Networks for Aspect Sentiment Classification
Shuai Wang | Sahisnu Mazumder | Bing Liu | Mianwei Zhou | Yi Chang
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Aspect sentiment classification (ASC) is a fundamental task in sentiment analysis. Given an aspect/target and a sentence, the task classifies the sentiment polarity expressed on the target in the sentence. Memory networks (MNs) have been used for this task recently and have achieved state-of-the-art results. In MNs, attention mechanism plays a crucial role in detecting the sentiment context for the given target. However, we found an important problem with the current MNs in performing the ASC task. Simply improving the attention mechanism will not solve it. The problem is referred to as target-sensitive sentiment, which means that the sentiment polarity of the (detected) context is dependent on the given target and it cannot be inferred from the context alone. To tackle this problem, we propose the target-sensitive memory networks (TMNs). Several alternative techniques are designed for the implementation of TMNs and their effectiveness is experimentally evaluated.