Roxanne El Baff


Corpus Annotation Graph Builder (CAG): An Architectural Framework to Create and Annotate a Multi-source Graph
Roxanne El Baff | Tobias Hecking | Andreas Hamm | Jasper W. Korte | Sabine Bartsch
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations

Graphs are a natural representation of complex data as their structure allows users to discover (often implicit) relations among the nodes intuitively. Applications build graphs in an ad-hoc fashion, usually tailored to specific use cases, limiting their reusability. To account for this, we present the Corpus Annotation Graph (CAG) architectural framework based on a create-and-annotate pattern that enables users to build uniformly structured graphs from diverse data sources and extend them with automatically extracted annotations (e.g., named entities, topics). The resulting graphs can be used for further analyses across multiple downstream tasks (e.g., node classification). Code and resources are publicly available on GitHub, and downloadable via PyPi with the command {texttt{pip install cag}.


The Moral Debater: A Study on the Computational Generation of Morally Framed Arguments
Milad Alshomary | Roxanne El Baff | Timon Gurcke | Henning Wachsmuth
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

An audience’s prior beliefs and morals are strong indicators of how likely they will be affected by a given argument. Utilizing such knowledge can help focus on shared values to bring disagreeing parties towards agreement. In argumentation technology, however, this is barely exploited so far. This paper studies the feasibility of automatically generating morally framed arguments as well as their effect on different audiences. Following the moral foundation theory, we propose a system that effectively generates arguments focusing on different morals. In an in-depth user study, we ask liberals and conservatives to evaluate the impact of these arguments. Our results suggest that, particularly when prior beliefs are challenged, an audience becomes more affected by morally framed arguments.


News Editorials: Towards Summarizing Long Argumentative Texts
Shahbaz Syed | Roxanne El Baff | Johannes Kiesel | Khalid Al Khatib | Benno Stein | Martin Potthast
Proceedings of the 28th International Conference on Computational Linguistics

The automatic summarization of argumentative texts has hardly been explored. This paper takes a further step in this direction, targeting news editorials, i.e., opinionated articles with a well-defined argumentation structure. With Webis-EditorialSum-2020, we present a corpus of 1330 carefully curated summaries for 266 news editorials. We evaluate these summaries based on a tailored annotation scheme, where a high-quality summary is expected to be thesis-indicative, persuasive, reasonable, concise, and self-contained. Our corpus contains at least three high-quality summaries for about 90% of the editorials, rendering it a valuable resource for the development and evaluation of summarization technology for long argumentative texts. We further report details of both, an in-depth corpus analysis, and the evaluation of two extractive summarization models.

Persuasiveness of News Editorials depending on Ideology and Personality
Roxanne El Baff | Khalid Al Khatib | Benno Stein | Henning Wachsmuth
Proceedings of the Third Workshop on Computational Modeling of People's Opinions, Personality, and Emotion's in Social Media

News editorials aim to shape the opinions of their readership and the general public on timely controversial issues. The impact of an editorial on the reader’s opinion does not only depend on its content and style, but also on the reader’s profile. Previous work has studied the effect of editorial style depending on general political ideologies (liberals vs.conservatives). In our work, we dig deeper into the persuasiveness of both content and style, exploring the role of the intensity of an ideology (lean vs.extreme) and the reader’s personality traits (agreeableness, conscientiousness, extraversion, neuroticism, and openness). Concretely, we train content- and style-based models on New York Times editorials for different ideology- and personality-specific groups. Our results suggest that particularly readers with extreme ideology and non “role model” personalities are impacted by style. We further analyze the importance of various text features with respect to the editorials’ impact, the readers’ profile, and the editorials’ geographical scope.

Analyzing the Persuasive Effect of Style in News Editorial Argumentation
Roxanne El Baff | Henning Wachsmuth | Khalid Al Khatib | Benno Stein
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

News editorials argue about political issues in order to challenge or reinforce the stance of readers with different ideologies. Previous research has investigated such persuasive effects for argumentative content. In contrast, this paper studies how important the style of news editorials is to achieve persuasion. To this end, we first compare content- and style-oriented classifiers on editorials from the liberal NYTimes with ideology-specific effect annotations. We find that conservative readers are resistant to NYTimes style, but on liberals, style even has more impact than content. Focusing on liberals, we then cluster the leads, bodies, and endings of editorials, in order to learn about writing style patterns of effective argumentation.


Computational Argumentation Synthesis as a Language Modeling Task
Roxanne El Baff | Henning Wachsmuth | Khalid Al Khatib | Manfred Stede | Benno Stein
Proceedings of the 12th International Conference on Natural Language Generation

Synthesis approaches in computational argumentation so far are restricted to generating claim-like argument units or short summaries of debates. Ultimately, however, we expect computers to generate whole new arguments for a given stance towards some topic, backing up claims following argumentative and rhetorical considerations. In this paper, we approach such an argumentation synthesis as a language modeling task. In our language model, argumentative discourse units are the “words”, and arguments represent the “sentences”. Given a pool of units for any unseen topic-stance pair, the model selects a set of unit types according to a basic rhetorical strategy (logos vs. pathos), arranges the structure of the types based on the units’ argumentative roles, and finally “phrases” an argument by instantiating the structure with semantically coherent units from the pool. Our evaluation suggests that the model can, to some extent, mimic the human synthesis of strategy-specific arguments.


Argumentation Synthesis following Rhetorical Strategies
Henning Wachsmuth | Manfred Stede | Roxanne El Baff | Khalid Al-Khatib | Maria Skeppstedt | Benno Stein
Proceedings of the 27th International Conference on Computational Linguistics

Persuasion is rarely achieved through a loose set of arguments alone. Rather, an effective delivery of arguments follows a rhetorical strategy, combining logical reasoning with appeals to ethics and emotion. We argue that such a strategy means to select, arrange, and phrase a set of argumentative discourse units. In this paper, we model rhetorical strategies for the computational synthesis of effective argumentation. In a study, we let 26 experts synthesize argumentative texts with different strategies for 10 topics. We find that the experts agree in the selection significantly more when following the same strategy. While the texts notably vary for different strategies, especially their arrangement remains stable. The results suggest that our model enables a strategical synthesis.

Challenge or Empower: Revisiting Argumentation Quality in a News Editorial Corpus
Roxanne El Baff | Henning Wachsmuth | Khalid Al-Khatib | Benno Stein
Proceedings of the 22nd Conference on Computational Natural Language Learning

News editorials are said to shape public opinion, which makes them a powerful tool and an important source of political argumentation. However, rarely do editorials change anyone’s stance on an issue completely, nor do they tend to argue explicitly (but rather follow a subtle rhetorical strategy). So, what does argumentation quality mean for editorials then? We develop the notion that an effective editorial challenges readers with opposing stance, and at the same time empowers the arguing skills of readers that share the editorial’s stance — or even challenges both sides. To study argumentation quality based on this notion, we introduce a new corpus with 1000 editorials from the New York Times, annotated for their perceived effect along with the annotators’ political orientations. Analyzing the corpus, we find that annotators with different orientation disagree on the effect significantly. While only 1% of all editorials changed anyone’s stance, more than 5% meet our notion. We conclude that our corpus serves as a suitable resource for studying the argumentation quality of news editorials.