Robert Jäschke


“Der Frank Sinatra der Wettervorhersage”: Cross-Lingual Vossian Antonomasia Extraction
Michel Schwab | Robert Jäschke | Frank Fischer
Proceedings of the 5th International Conference on Natural Language and Speech Processing (ICNLSP 2022)


Lotte and Annette: A Framework for Finding and Exploring Key Passages in Literary Works
Frederik Arnold | Robert Jäschke
Proceedings of the Workshop on Natural Language Processing for Digital Humanities

We present an approach that leverages expert knowledge contained in scholarly works to automatically identify key passages in literary works. Specifically, we extend a text reuse detection method for finding quotations, such that our system Lotte can deal with common properties of quotations, for example, ellipses or inaccurate quotations. An evaluation shows that Lotte outperforms four existing approaches. To generate key passages, we combine overlapping quotations from multiple scholarly texts. An interactive website, called Annette, for visualizing and exploring key passages makes the results accessible and explorable.


“A Buster Keaton of Linguistics”: First Automated Approaches for the Extraction of Vossian Antonomasia
Michel Schwab | Robert Jäschke | Frank Fischer | Jannik Strötgen
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Attributing a particular property to a person by naming another person, who is typically wellknown for the respective property, is called a Vossian Antonomasia (VA). This subtpye of metonymy, which overlaps with metaphor, has a specific syntax and is especially frequent in journalistic texts. While identifying Vossian Antonomasia is of particular interest in the study of stylistics, it is also a source of errors in relation and fact extraction as an explicitly mentioned entity occurs only metaphorically and should not be associated with respective contexts. Despite rather simple syntactic variations, the automatic extraction of VA was never addressed as yet since it requires a deeper semantic understanding of mentioned entities and underlying relations. In this paper, we propose a first method for the extraction of VAs that works completely automatically. Our approaches use named entity recognition, distant supervision based on Wikidata, and a bi-directional LSTM for postprocessing. The evaluation on 1.8 million articles of the New York Times corpus shows that our approach significantly outperforms the only existing semi-automatic approach for VA identification by more than 30 percentage points in precision.


Semantic Annotation for Microblog Topics Using Wikipedia Temporal Information
Tuan Tran | Nam Khanh Tran | Asmelash Teka Hadgu | Robert Jäschke
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing