Rishabh Bhardwaj


KNOT: Knowledge Distillation Using Optimal Transport for Solving NLP Tasks
Rishabh Bhardwaj | Tushar Vaidya | Soujanya Poria
Proceedings of the 29th International Conference on Computational Linguistics

We propose a new approach, Knowledge Distillation using Optimal Transport (KNOT), to distill the natural language semantic knowledge from multiple teacher networks to a student network. KNOT aims to train a (global) student model by learning to minimize the optimal transport cost of its assigned probability distribution over the labels to the weighted sum of probabilities predicted by the (local) teacher models, under the constraints that the student model does not have access to teacher models’ parameters or training data. To evaluate the quality of knowledge transfer, we introduce a new metric, Semantic Distance (SD), that measures semantic closeness between the predicted and ground truth label distributions. The proposed method shows improvements in the global model’s SD performance over the baseline across three NLP tasks while performing on par with Entropy-based distillation on standard accuracy and F1 metrics. The implementation pertaining to this work is publicly available at https://github.com/declare-lab/KNOT.

Vector-Quantized Input-Contextualized Soft Prompts for Natural Language Understanding
Rishabh Bhardwaj | Amrita Saha | Steven C.H. Hoi | Soujanya Poria
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Prompt Tuning has been largely successful as a parameter-efficient method of conditioning large-scale pre-trained language models to perform downstream tasks. Thus far, soft prompt tuning learns a fixed set of task-specific continuous vectors, i.e., soft tokens that remain static across the task samples. A fixed prompt, however, may not generalize well to the diverse kinds of inputs the task comprises. In order to address this, we propose Vector-quantized Input-contextualized Prompts (VIP) as an extension to the soft prompt tuning framework. VIP particularly focuses on two aspects—contextual prompts that learns input-specific contextualization of the soft prompt tokens through a small-scale sentence encoder and quantized prompts that maps the contextualized prompts to a set of learnable codebook vectors through a Vector quantization network. On various language understanding tasks like SuperGLUE, QA, Relation classification, NER and NLI, VIP outperforms the soft prompt tuning (PT) baseline by an average margin of 1.19%. Further, our generalization studies show that VIP learns more robust prompt representations, surpassing PT by a margin of 0.6% - 5.3% on Out-of-domain QA and NLI tasks respectively, and by 0.75% on Multi-Task setup over 4 tasks spanning across 12 domains.


More Identifiable yet Equally Performant Transformers for Text Classification
Rishabh Bhardwaj | Navonil Majumder | Soujanya Poria | Eduard Hovy
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Interpretability is an important aspect of the trustworthiness of a model’s predictions. Transformer’s predictions are widely explained by the attention weights, i.e., a probability distribution generated at its self-attention unit (head). Current empirical studies provide shreds of evidence that attention weights are not explanations by proving that they are not unique. A recent study showed theoretical justifications to this observation by proving the non-identifiability of attention weights. For a given input to a head and its output, if the attention weights generated in it are unique, we call the weights identifiable. In this work, we provide deeper theoretical analysis and empirical observations on the identifiability of attention weights. Ignored in the previous works, we find the attention weights are more identifiable than we currently perceive by uncovering the hidden role of the key vector. However, the weights are still prone to be non-unique attentions that make them unfit for interpretation. To tackle this issue, we provide a variant of the encoder layer that decouples the relationship between key and value vector and provides identifiable weights up to the desired length of the input. We prove the applicability of such variations by providing empirical justifications on varied text classification tasks. The implementations are available at https://github.com/declare-lab/identifiable-transformers.


Twitter Homophily: Network Based Prediction of User’s Occupation
Jiaqi Pan | Rishabh Bhardwaj | Wei Lu | Hai Leong Chieu | Xinghao Pan | Ni Yi Puay
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

In this paper, we investigate the importance of social network information compared to content information in the prediction of a Twitter user’s occupational class. We show that the content information of a user’s tweets, the profile descriptions of a user’s follower/following community, and the user’s social network provide useful information for classifying a user’s occupational group. In our study, we extend an existing data set for this problem, and we achieve significantly better performance by using social network homophily that has not been fully exploited in previous work. In our analysis, we found that by using the graph convolutional network to exploit social homophily, we can achieve competitive performance on this data set with just a small fraction of the training data.