Rina Dutta


Using Deep Neural Networks with Intra- and Inter-Sentence Context to Classify Suicidal Behaviour
Xingyi Song | Johnny Downs | Sumithra Velupillai | Rachel Holden | Maxim Kikoler | Kalina Bontcheva | Rina Dutta | Angus Roberts
Proceedings of the Twelfth Language Resources and Evaluation Conference

Identifying statements related to suicidal behaviour in psychiatric electronic health records (EHRs) is an important step when modeling that behaviour, and when assessing suicide risk. We apply a deep neural network based classification model with a lightweight context encoder, to classify sentence level suicidal behaviour in EHRs. We show that incorporating information from sentences to left and right of the target sentence significantly improves classification accuracy. Our approach achieved the best performance when classifying suicidal behaviour in Autism Spectrum Disorder patient records. The results could have implications for suicidality research and clinical surveillance.


Hierarchical neural model with attention mechanisms for the classification of social media text related to mental health
Julia Ive | George Gkotsis | Rina Dutta | Robert Stewart | Sumithra Velupillai
Proceedings of the Fifth Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic

Mental health problems represent a major public health challenge. Automated analysis of text related to mental health is aimed to help medical decision-making, public health policies and to improve health care. Such analysis may involve text classification. Traditionally, automated classification has been performed mainly using machine learning methods involving costly feature engineering. Recently, the performance of those methods has been dramatically improved by neural methods. However, mainly Convolutional neural networks (CNNs) have been explored. In this paper, we apply a hierarchical Recurrent neural network (RNN) architecture with an attention mechanism on social media data related to mental health. We show that this architecture improves overall classification results as compared to previously reported results on the same data. Benefitting from the attention mechanism, it can also efficiently select text elements crucial for classification decisions, which can also be used for in-depth analysis.

Time Expressions in Mental Health Records for Symptom Onset Extraction
Natalia Viani | Lucia Yin | Joyce Kam | Ayunni Alawi | André Bittar | Rina Dutta | Rashmi Patel | Robert Stewart | Sumithra Velupillai
Proceedings of the Ninth International Workshop on Health Text Mining and Information Analysis

For psychiatric disorders such as schizophrenia, longer durations of untreated psychosis are associated with worse intervention outcomes. Data included in electronic health records (EHRs) can be useful for retrospective clinical studies, but much of this is stored as unstructured text which cannot be directly used in computation. Natural Language Processing (NLP) methods can be used to extract this data, in order to identify symptoms and treatments from mental health records, and temporally anchor the first emergence of these. We are developing an EHR corpus annotated with time expressions, clinical entities and their relations, to be used for NLP development. In this study, we focus on the first step, identifying time expressions in EHRs for patients with schizophrenia. We developed a gold standard corpus, compared this corpus to other related corpora in terms of content and time expression prevalence, and adapted two NLP systems for extracting time expressions. To the best of our knowledge, this is the first resource annotated for temporal entities in the mental health domain.


The language of mental health problems in social media
George Gkotsis | Anika Oellrich | Tim Hubbard | Richard Dobson | Maria Liakata | Sumithra Velupillai | Rina Dutta
Proceedings of the Third Workshop on Computational Linguistics and Clinical Psychology

Don’t Let Notes Be Misunderstood: A Negation Detection Method for Assessing Risk of Suicide in Mental Health Records
George Gkotsis | Sumithra Velupillai | Anika Oellrich | Harry Dean | Maria Liakata | Rina Dutta
Proceedings of the Third Workshop on Computational Linguistics and Clinical Psychology