Ravneet Punia


How Low is Too Low? A Computational Perspective on Extremely Low-Resource Languages
Rachit Bansal | Himanshu Choudhary | Ravneet Punia | Niko Schenk | Émilie Pagé-Perron | Jacob Dahl
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: Student Research Workshop

Despite the recent advancements of attention-based deep learning architectures across a majority of Natural Language Processing tasks, their application remains limited in a low-resource setting because of a lack of pre-trained models for such languages. In this study, we make the first attempt to investigate the challenges of adapting these techniques to an extremely low-resource language – Sumerian cuneiform – one of the world’s oldest written languages attested from at least the beginning of the 3rd millennium BC. Specifically, we introduce the first cross-lingual information extraction pipeline for Sumerian, which includes part-of-speech tagging, named entity recognition, and machine translation. We introduce InterpretLR, an interpretability toolkit for low-resource NLP and use it alongside human evaluations to gauge the trained models. Notably, all our techniques and most components of our pipeline can be generalised to any low-resource language. We publicly release all our implementations including a novel data set with domain-specific pre-processing to promote further research in this domain.


Towards the First Machine Translation System for Sumerian Transliterations
Ravneet Punia | Niko Schenk | Christian Chiarcos | Émilie Pagé-Perron
Proceedings of the 28th International Conference on Computational Linguistics

The Sumerian cuneiform script was invented more than 5,000 years ago and represents one of the oldest in history. We present the first attempt to translate Sumerian texts into English automatically. We publicly release high-quality corpora for standardized training and evaluation and report results on experiments with supervised, phrase-based, and transfer learning techniques for machine translation. Quantitative and qualitative evaluations indicate the usefulness of the translations. Our proposed methodology provides a broader audience of researchers with novel access to the data, accelerates the costly and time-consuming manual translation process, and helps them better explore the relationships between Sumerian cuneiform and Mesopotamian culture.

Improving Neural Machine Translation for Sanskrit-English
Ravneet Punia | Aditya Sharma | Sarthak Pruthi | Minni Jain
Proceedings of the 17th International Conference on Natural Language Processing (ICON)

Sanskrit is one of the oldest languages of the Asian Subcontinent that fell out of common usage around 600 B.C. In this paper, we attempt to translate Sanskrit to English using Neural Machine Translation approaches based on Reinforcement Learning and Transfer learning that were never tried and tested on Sanskrit. Along with the paper, we also release monolingual Sanskrit and parallel aligned Sanskrit-English corpora for the research community. Our methodologies outperform the previous approaches applied to Sanskrit by various re- searchers and will further help the linguistic community to accelerate the costly and time consuming manual translation process.