Qin Jin


M3ED: Multi-modal Multi-scene Multi-label Emotional Dialogue Database
Jinming Zhao | Tenggan Zhang | Jingwen Hu | Yuchen Liu | Qin Jin | Xinchao Wang | Haizhou Li
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The emotional state of a speaker can be influenced by many different factors in dialogues, such as dialogue scene, dialogue topic, and interlocutor stimulus. The currently available data resources to support such multimodal affective analysis in dialogues are however limited in scale and diversity. In this work, we propose a Multi-modal Multi-scene Multi-label Emotional Dialogue dataset, M3ED, which contains 990 dyadic emotional dialogues from 56 different TV series, a total of 9,082 turns and 24,449 utterances. M3ED is annotated with 7 emotion categories (happy, surprise, sad, disgust, anger, fear, and neutral) at utterance level, and encompasses acoustic, visual, and textual modalities. To the best of our knowledge, M3ED is the first multimodal emotional dialogue dataset in Chinese.It is valuable for cross-culture emotion analysis and recognition. We apply several state-of-the-art methods on the M3ED dataset to verify the validity and quality of the dataset. We also propose a general Multimodal Dialogue-aware Interaction framework, MDI, to model the dialogue context for emotion recognition, which achieves comparable performance to the state-of-the-art methods on the M3ED. The full dataset and codes are available.

MovieUN: A Dataset for Movie Understanding and Narrating
Qi Zhang | Zihao Yue | Anwen Hu | Ziheng Wang | Qin Jin
Findings of the Association for Computational Linguistics: EMNLP 2022

Automatic movie narration generation and narration grounding are very important to provide a true movie experience for the blind and visually impaired. To tell the movie story well, it is necessary to mention plot-related details (such as character names) and keep the narrations in a plot coherent. Taking these two points into consideration, we construct a Chinese large-scale video benchmark from 101 movies for Movie Understanding and Narrating (MovieUN) to support the Movie Clip Narrating (MCN) task and Temporal Narration Grounding (TNG) task. We split movies in MovieUN into movie clips according to plots, and pair them with corresponding narrations provided by the movie narrators. Ultimately, the TNG task involves 3,253 long video clips totaling 179 hours. The MCN task contains 33,060 video clips totaling 105 hours. We benchmark state-of-the-art video captioning models and temporal grounding models in MCN and TNG tasks, respectively. Furthermore, to accurately comprehend plots of different characters, we propose methods to incorporate portraits of actors as external knowledge in both tasks. The experiment results demonstrate the effectiveness of our proposed methods. The dataset and codes are released at https://github.com/yuezih/MovieUN.

DialogueEIN: Emotion Interaction Network for Dialogue Affective Analysis
Yuchen Liu | Jinming Zhao | Jingwen Hu | Ruichen Li | Qin Jin
Proceedings of the 29th International Conference on Computational Linguistics

Emotion Recognition in Conversation (ERC) has attracted increasing attention in the affective computing research field. Previous works have mainly focused on modeling the semantic interactions in the dialogue and implicitly inferring the evolution of the speakers’ emotional states. Few works have considered the emotional interactions, which directly reflect the emotional evolution of speakers in the dialogue. According to psychological and behavioral studies, the emotional inertia and emotional stimulus are important factors that affect the speaker’s emotional state in conversations. In this work, we propose a novel Dialogue Emotion Interaction Network, DialogueEIN, to explicitly model the intra-speaker, inter-speaker, global and local emotional interactions to respectively simulate the emotional inertia, emotional stimulus, global and local emotional evolution in dialogues. Extensive experiments on four ERC benchmark datasets, IEMOCAP, MELD, EmoryNLP and DailyDialog, show that our proposed DialogueEIN considering emotional interaction factors can achieve superior or competitive performance compared to state-of-the-art methods. Our codes and models are released.


Missing Modality Imagination Network for Emotion Recognition with Uncertain Missing Modalities
Jinming Zhao | Ruichen Li | Qin Jin
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Multimodal fusion has been proved to improve emotion recognition performance in previous works. However, in real-world applications, we often encounter the problem of missing modality, and which modalities will be missing is uncertain. It makes the fixed multimodal fusion fail in such cases. In this work, we propose a unified model, Missing Modality Imagination Network (MMIN), to deal with the uncertain missing modality problem. MMIN learns robust joint multimodal representations, which can predict the representation of any missing modality given available modalities under different missing modality conditions.Comprehensive experiments on two benchmark datasets demonstrate that the unified MMIN model significantly improves emotion recognition performance under both uncertain missing-modality testing conditions and full-modality ideal testing condition. The code will be available at https://github.com/AIM3-RUC/MMIN.

MMGCN: Multimodal Fusion via Deep Graph Convolution Network for Emotion Recognition in Conversation
Jingwen Hu | Yuchen Liu | Jinming Zhao | Qin Jin
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Emotion recognition in conversation (ERC) is a crucial component in affective dialogue systems, which helps the system understand users’ emotions and generate empathetic responses. However, most works focus on modeling speaker and contextual information primarily on the textual modality or simply leveraging multimodal information through feature concatenation. In order to explore a more effective way of utilizing both multimodal and long-distance contextual information, we propose a new model based on multimodal fused graph convolutional network, MMGCN, in this work. MMGCN can not only make use of multimodal dependencies effectively, but also leverage speaker information to model inter-speaker and intra-speaker dependency. We evaluate our proposed model on two public benchmark datasets, IEMOCAP and MELD, and the results prove the effectiveness of MMGCN, which outperforms other SOTA methods by a significant margin under the multimodal conversation setting.

Language Resource Efficient Learning for Captioning
Jia Chen | Yike Wu | Shiwan Zhao | Qin Jin
Findings of the Association for Computational Linguistics: EMNLP 2021

Due to complex cognitive and inferential efforts involved in the manual generation of one caption per image/video input, the human annotation resources are very limited for captioning tasks. We define language resource efficient as reaching the same performance with fewer annotated captions per input. We first study the performance degradation of caption models in different language resource settings. Our analysis of caption models with SC loss shows that the performance degradation is caused by the increasingly noisy estimation of reward and baseline with fewer language resources. To mitigate this issue, we propose to reduce the variance of noise in the baseline by generalizing the single pairwise comparison in SC loss and using multiple generalized pairwise comparisons. The generalized pairwise comparison (GPC) measures the difference between the evaluation scores of two captions with respect to an input. Empirically, we show that the model trained with the proposed GPC loss is efficient on language resource and achieves similar performance with the state-of-the-art models on MSCOCO by using only half of the language resources. Furthermore, our model significantly outperforms the state-of-the-art models on a video caption dataset that has only one labeled caption per input in the training set.


YouMakeup: A Large-Scale Domain-Specific Multimodal Dataset for Fine-Grained Semantic Comprehension
Weiying Wang | Yongcheng Wang | Shizhe Chen | Qin Jin
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Multimodal semantic comprehension has attracted increasing research interests recently such as visual question answering and caption generation. However, due to the data limitation, fine-grained semantic comprehension has not been well investigated, which requires to capture semantic details of multimodal contents. In this work, we introduce “YouMakeup”, a large-scale multimodal instructional video dataset to support fine-grained semantic comprehension research in specific domain. YouMakeup contains 2,800 videos from YouTube, spanning more than 420 hours in total. Each video is annotated with a sequence of natural language descriptions for instructional steps, grounded in temporal video range and spatial facial areas. The annotated steps in a video involve subtle difference in actions, products and regions, which requires fine-grained understanding and reasoning both temporally and spatially. In order to evaluate models’ ability for fined-grained comprehension, we further propose two groups of tasks including generation tasks and visual question answering from different aspects. We also establish a baseline of step caption generation for future comparison. The dataset will be publicly available at https://github. com/AIM3-RUC/YouMakeup to support research investigation in fine-grained semantic comprehension.


Improvements in Non-Verbal Cue Identification Using Multilingual Phone Strings
Tanja Schultz | Qin Jin | Kornel Laskowski | Alicia Tribble | Alex Waibel
Proceedings of the ACL-02 Workshop on Speech-to-Speech Translation: Algorithms and Systems