Ozan Caglayan


BERTGen: Multi-task Generation through BERT
Faidon Mitzalis | Ozan Caglayan | Pranava Madhyastha | Lucia Specia
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

We present BERTGen, a novel, generative, decoder-only model which extends BERT by fusing multimodal and multilingual pre-trained models VL-BERT and M-BERT, respectively. BERTGen is auto-regressively trained for language generation tasks, namely image captioning, machine translation and multimodal machine translation, under a multi-task setting. With a comprehensive set of evaluations, we show that BERTGen outperforms many strong baselines across the tasks explored. We also show BERTGen’s ability for zero-shot language generation, where it exhibits competitive performance to supervised counterparts. Finally, we conduct ablation studies which demonstrate that BERTGen substantially benefits from multi-tasking and effectively transfers relevant inductive biases from the pre-trained models.

Cross-lingual Visual Pre-training for Multimodal Machine Translation
Ozan Caglayan | Menekse Kuyu | Mustafa Sercan Amac | Pranava Madhyastha | Erkut Erdem | Aykut Erdem | Lucia Specia
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Pre-trained language models have been shown to improve performance in many natural language tasks substantially. Although the early focus of such models was single language pre-training, recent advances have resulted in cross-lingual and visual pre-training methods. In this paper, we combine these two approaches to learn visually-grounded cross-lingual representations. Specifically, we extend the translation language modelling (Lample and Conneau, 2019) with masked region classification and perform pre-training with three-way parallel vision & language corpora. We show that when fine-tuned for multimodal machine translation, these models obtain state-of-the-art performance. We also provide qualitative insights into the usefulness of the learned grounded representations.

Exploiting Multimodal Reinforcement Learning for Simultaneous Machine Translation
Julia Ive | Andy Mingren Li | Yishu Miao | Ozan Caglayan | Pranava Madhyastha | Lucia Specia
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

This paper addresses the problem of simultaneous machine translation (SiMT) by exploring two main concepts: (a) adaptive policies to learn a good trade-off between high translation quality and low latency; and (b) visual information to support this process by providing additional (visual) contextual information which may be available before the textual input is produced. For that, we propose a multimodal approach to simultaneous machine translation using reinforcement learning, with strategies to integrate visual and textual information in both the agent and the environment. We provide an exploration on how different types of visual information and integration strategies affect the quality and latency of simultaneous translation models, and demonstrate that visual cues lead to higher quality while keeping the latency low.


Curious Case of Language Generation Evaluation Metrics: A Cautionary Tale
Ozan Caglayan | Pranava Madhyastha | Lucia Specia
Proceedings of the 28th International Conference on Computational Linguistics

Automatic evaluation of language generation systems is a well-studied problem in Natural Language Processing. While novel metrics are proposed every year, a few popular metrics remain as the de facto metrics to evaluate tasks such as image captioning and machine translation, despite their known limitations. This is partly due to ease of use, and partly because researchers expect to see them and know how to interpret them. In this paper, we urge the community for more careful consideration of how they automatically evaluate their models by demonstrating important failure cases on multiple datasets, language pairs and tasks. Our experiments show that metrics (i) usually prefer system outputs to human-authored texts, (ii) can be insensitive to correct translations of rare words, (iii) can yield surprisingly high scores when given a single sentence as system output for the entire test set.

Simultaneous Machine Translation with Visual Context
Ozan Caglayan | Julia Ive | Veneta Haralampieva | Pranava Madhyastha | Loïc Barrault | Lucia Specia
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Simultaneous machine translation (SiMT) aims to translate a continuous input text stream into another language with the lowest latency and highest quality possible. The translation thus has to start with an incomplete source text, which is read progressively, creating the need for anticipation. In this paper, we seek to understand whether the addition of visual information can compensate for the missing source context. To this end, we analyse the impact of different multimodal approaches and visual features on state-of-the-art SiMT frameworks. Our results show that visual context is helpful and that visually-grounded models based on explicit object region information are much better than commonly used global features, reaching up to 3 BLEU points improvement under low latency scenarios. Our qualitative analysis illustrates cases where only the multimodal systems are able to translate correctly from English into gender-marked languages, as well as deal with differences in word order, such as adjective-noun placement between English and French.


Transformer-based Cascaded Multimodal Speech Translation
Zixiu Wu | Ozan Caglayan | Julia Ive | Josiah Wang | Lucia Specia
Proceedings of the 16th International Conference on Spoken Language Translation

This paper describes the cascaded multimodal speech translation systems developed by Imperial College London for the IWSLT 2019 evaluation campaign. The architecture consists of an automatic speech recognition (ASR) system followed by a Transformer-based multimodal machine translation (MMT) system. While the ASR component is identical across the experiments, the MMT model varies in terms of the way of integrating the visual context (simple conditioning vs. attention), the type of visual features exploited (pooled, convolutional, action categories) and the underlying architecture. For the latter, we explore both the canonical transformer and its deliberation version with additive and cascade variants which differ in how they integrate the textual attention. Upon conducting extensive experiments, we found that (i) the explored visual integration schemes often harm the translation performance for the transformer and additive deliberation, but considerably improve the cascade deliberation; (ii) the transformer and cascade deliberation integrate the visual modality better than the additive deliberation, as shown by the incongruence analysis.

Probing the Need for Visual Context in Multimodal Machine Translation
Ozan Caglayan | Pranava Madhyastha | Lucia Specia | Loïc Barrault
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Current work on multimodal machine translation (MMT) has suggested that the visual modality is either unnecessary or only marginally beneficial. We posit that this is a consequence of the very simple, short and repetitive sentences used in the only available dataset for the task (Multi30K), rendering the source text sufficient as context. In the general case, however, we believe that it is possible to combine visual and textual information in order to ground translations. In this paper we probe the contribution of the visual modality to state-of-the-art MMT models by conducting a systematic analysis where we partially deprive the models from source-side textual context. Our results show that under limited textual context, models are capable of leveraging the visual input to generate better translations. This contradicts the current belief that MMT models disregard the visual modality because of either the quality of the image features or the way they are integrated into the model.


LIUM-CVC Submissions for WMT18 Multimodal Translation Task
Ozan Caglayan | Adrien Bardet | Fethi Bougares | Loïc Barrault | Kai Wang | Marc Masana | Luis Herranz | Joost van de Weijer
Proceedings of the Third Conference on Machine Translation: Shared Task Papers

This paper describes the multimodal Neural Machine Translation systems developed by LIUM and CVC for WMT18 Shared Task on Multimodal Translation. This year we propose several modifications to our previous multimodal attention architecture in order to better integrate convolutional features and refine them using encoder-side information. Our final constrained submissions ranked first for English→French and second for English→German language pairs among the constrained submissions according to the automatic evaluation metric METEOR.


LIUM Machine Translation Systems for WMT17 News Translation Task
Mercedes García-Martínez | Ozan Caglayan | Walid Aransa | Adrien Bardet | Fethi Bougares | Loïc Barrault
Proceedings of the Second Conference on Machine Translation

LIUM-CVC Submissions for WMT17 Multimodal Translation Task
Ozan Caglayan | Walid Aransa | Adrien Bardet | Mercedes García-Martínez | Fethi Bougares | Loïc Barrault | Marc Masana | Luis Herranz | Joost van de Weijer
Proceedings of the Second Conference on Machine Translation


Does Multimodality Help Human and Machine for Translation and Image Captioning?
Ozan Caglayan | Walid Aransa | Yaxing Wang | Marc Masana | Mercedes García-Martínez | Fethi Bougares | Loïc Barrault | Joost van de Weijer
Proceedings of the First Conference on Machine Translation: Volume 2, Shared Task Papers