Mustafa Jarrar


Curras + Baladi: Towards a Levantine Corpus
Karim Al-Haff | Mustafa Jarrar | Tymaa Hammouda | Fadi Zaraket
Proceedings of the Thirteenth Language Resources and Evaluation Conference

This paper presents two-fold contributions: a full revision of the Palestinian morphologically annotated corpus (Curras), and a newly annotated Lebanese corpus (Baladi). Both corpora can be used as a more general Levantine corpus. Baladi consists of around 9.6K morphologically annotated tokens. Each token was manually annotated with several morphological features and using LDC’s SAMA lemmas and tags. The inter-annotator evaluation on most features illustrates 78.5% Kappa and 90.1% F1-Score. Curras was revised by refining all annotations for accuracy, normalization and unification of POS tags, and linking with SAMA lemmas. This revision was also important to ensure that both corpora are compatible and can help to bridge the nuanced linguistic gaps that exist between the two highly mutually intelligible dialects. Both corpora are publicly available through a web portal.

Wojood: Nested Arabic Named Entity Corpus and Recognition using BERT
Mustafa Jarrar | Mohammed Khalilia | Sana Ghanem
Proceedings of the Thirteenth Language Resources and Evaluation Conference

This paper presents Wojood, a corpus for Arabic nested Named Entity Recognition (NER). Nested entities occur when one entity mention is embedded inside another entity mention. Wojood consists of about 550K Modern Standard Arabic (MSA) and dialect tokens that are manually annotated with 21 entity types including person, organization, location, event and date. More importantly, the corpus is annotated with nested entities instead of the more common flat annotations. The data contains about 75K entities and 22.5% of which are nested. The inter-annotator evaluation of the corpus demonstrated a strong agreement with Cohen’s Kappa of 0.979 and an F1-score of 0.976. To validate our data, we used the corpus to train a nested NER model based on multi-task learning using the pre-trained AraBERT (Arabic BERT). The model achieved an overall micro F1-score of 0.884. Our corpus, the annotation guidelines, the source code and the pre-trained model are publicly available.


Extracting Synonyms from Bilingual Dictionaries
Mustafa Jarrar | Eman Naser | Muhammad Khalifa | Khaled Shaalan
Proceedings of the 11th Global Wordnet Conference

We present our progress in developing a novel algorithm to extract synonyms from bilingual dictionaries. Identification and usage of synonyms play a significant role in improving the performance of information access applications. The idea is to construct a translation graph from translation pairs, then to extract and consolidate cyclic paths to form bilingual sets of synonyms. The initial evaluation of this algorithm illustrates promising results in extracting Arabic-English bilingual synonyms. In the evaluation, we first converted the synsets in the Arabic WordNet into translation pairs (i.e., losing word-sense memberships). Next, we applied our algorithm to rebuild these synsets. We compared the original and extracted synsets obtaining an F-Measure of 82.3% and 82.1% for Arabic and English synsets extraction, respectively.

LU-BZU at SemEval-2021 Task 2: Word2Vec and Lemma2Vec performance in Arabic Word-in-Context disambiguation
Moustafa Al-Hajj | Mustafa Jarrar
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

This paper presents a set of experiments to evaluate and compare between the performance of using CBOW Word2Vec and Lemma2Vec models for Arabic Word-in-Context (WiC) disambiguation without using sense inventories or sense embeddings. As part of the SemEval-2021 Shared Task 2 on WiC disambiguation, we used the dataset (2k sentence pairs) to decide whether two words in a given sentence pair carry the same meaning. We used two Word2Vec models: Wiki-CBOW, a pre-trained model on Arabic Wikipedia, and another model we trained on large Arabic corpora of about 3 billion tokens. Two Lemma2Vec models was also constructed based on the two Word2Vec models. Each of the four models was then used in the WiC disambiguation task, and then evaluated on the SemEval-2021 dataset. At the end, we reported the performance of different models and compared between using lemma-based and word-based models.

ArabGlossBERT: Fine-Tuning BERT on Context-Gloss Pairs for WSD
Moustafa Al-Hajj | Mustafa Jarrar
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)

Using pre-trained transformer models such as BERT has proven to be effective in many NLP tasks. This paper presents our work to fine-tune BERT models for Arabic Word Sense Disambiguation (WSD). We treated the WSD task as a sentence-pair binary classification task. First, we constructed a dataset of labeled Arabic context-gloss pairs (~167k pairs) we extracted from the Arabic Ontology and the large lexicographic database available at Birzeit University. Each pair was labeled as True or False and target words in each context were identified and annotated. Second, we used this dataset for fine-tuning three pre-trained Arabic BERT models. Third, we experimented the use of different supervised signals used to emphasize target words in context. Our experiments achieved promising results (accuracy of 84%) although we used a large set of senses in the experiment.


Towards Building Lexical Ontology via Cross-Language Matching
Mamoun Abu Helou | Matteo Palmonari | Mustafa Jarrar | Christiane Fellbaum
Proceedings of the Seventh Global Wordnet Conference

Building a Corpus for Palestinian Arabic: a Preliminary Study
Mustafa Jarrar | Nizar Habash | Diyam Akra | Nasser Zalmout
Proceedings of the EMNLP 2014 Workshop on Arabic Natural Language Processing (ANLP)