Mingyang Song


2023

pdf
A Survey on Recent Advances in Keyphrase Extraction from Pre-trained Language Models
Mingyang Song | Yi Feng | Liping Jing
Findings of the Association for Computational Linguistics: EACL 2023

Keyphrase Extraction (KE) is a critical component in Natural Language Processing (NLP) systems for selecting a set of phrases from the document that could summarize the important information discussed in the document. Typically, a keyphrase extraction system can significantly accelerate the speed of information retrieval and help people get first-hand information from a long document quickly and accurately. Specifically, keyphrases are capable of providing semantic metadata characterizing documents and producing an overview of the content of a document. In this paper, we introduce keyphrase extraction, present a review of the recent studies based on pre-trained language models, offer interesting insights on the different approaches, highlight open issues, and give a comparative experimental study of popular supervised as well as unsupervised techniques on several datasets. To encourage more instantiations, we release the related files mentioned in this paper.

2022

pdf
Hyperbolic Relevance Matching for Neural Keyphrase Extraction
Mingyang Song | Yi Feng | Liping Jing
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Keyphrase extraction is a fundamental task in natural language processing that aims to extract a set of phrases with important information from a source document. Identifying important keyphrases is the central component of keyphrase extraction, and its main challenge is learning to represent information comprehensively and discriminate importance accurately. In this paper, to address the above issues, we design a new hyperbolic matching model (HyperMatch) to explore keyphrase extraction in hyperbolic space. Concretely, to represent information comprehensively, HyperMatch first takes advantage of the hidden representations in the middle layers of RoBERTa and integrates them as the word embeddings via an adaptive mixing layer to capture the hierarchical syntactic and semantic structures. Then, considering the latent structure information hidden in natural languages, HyperMatch embeds candidate phrases and documents in the same hyperbolic space via a hyperbolic phrase encoder and a hyperbolic document encoder. To discriminate importance accurately, HyperMatch estimates the importance of each candidate phrase by explicitly modeling the phrase-document relevance via the Poincaré distance and optimizes the whole model by minimizing the hyperbolic margin-based triplet loss. Extensive experiments are conducted on six benchmark datasets and demonstrate that HyperMatch outperforms the recent state-of-the-art baselines.

pdf
Utilizing BERT Intermediate Layers for Unsupervised Keyphrase Extraction
Mingyang Song | Yi Feng | Liping Jing
Proceedings of the 5th International Conference on Natural Language and Speech Processing (ICNLSP 2022)

2021

pdf
Importance Estimation from Multiple Perspectives for Keyphrase Extraction
Mingyang Song | Liping Jing | Lin Xiao
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Keyphrase extraction is a fundamental task in Natural Language Processing, which usually contains two main parts: candidate keyphrase extraction and keyphrase importance estimation. From the view of human understanding documents, we typically measure the importance of phrase according to its syntactic accuracy, information saliency, and concept consistency simultaneously. However, most existing keyphrase extraction approaches only focus on the part of them, which leads to biased results. In this paper, we propose a new approach to estimate the importance of keyphrase from multiple perspectives (called as KIEMP) and further improve the performance of keyphrase extraction. Specifically, KIEMP estimates the importance of phrase with three modules: a chunking module to measure its syntactic accuracy, a ranking module to check its information saliency, and a matching module to judge the concept (i.e., topic) consistency between phrase and the whole document. These three modules are seamlessly jointed together via an end-to-end multi-task learning model, which is helpful for three parts to enhance each other and balance the effects of three perspectives. Experimental results on six benchmark datasets show that KIEMP outperforms the existing state-of-the-art keyphrase extraction approaches in most cases.