Michael Sejr Schlichtkrull


Joint Verification and Reranking for Open Fact Checking Over Tables
Michael Sejr Schlichtkrull | Vladimir Karpukhin | Barlas Oguz | Mike Lewis | Wen-tau Yih | Sebastian Riedel
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Structured information is an important knowledge source for automatic verification of factual claims. Nevertheless, the majority of existing research into this task has focused on textual data, and the few recent inquiries into structured data have been for the closed-domain setting where appropriate evidence for each claim is assumed to have already been retrieved. In this paper, we investigate verification over structured data in the open-domain setting, introducing a joint reranking-and-verification model which fuses evidence documents in the verification component. Our open-domain model achieves performance comparable to the closed-domain state-of-the-art on the TabFact dataset, and demonstrates performance gains from the inclusion of multiple tables as well as a significant improvement over a heuristic retrieval baseline.

pdf bib
The Fact Extraction and VERification Over Unstructured and Structured information (FEVEROUS) Shared Task
Rami Aly | Zhijiang Guo | Michael Sejr Schlichtkrull | James Thorne | Andreas Vlachos | Christos Christodoulopoulos | Oana Cocarascu | Arpit Mittal
Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER)

The Fact Extraction and VERification Over Unstructured and Structured information (FEVEROUS) shared task, asks participating systems to determine whether human-authored claims are Supported or Refuted based on evidence retrieved from Wikipedia (or NotEnoughInfo if the claim cannot be verified). Compared to the FEVER 2018 shared task, the main challenge is the addition of structured data (tables and lists) as a source of evidence. The claims in the FEVEROUS dataset can be verified using only structured evidence, only unstructured evidence, or a mixture of both. Submissions are evaluated using the FEVEROUS score that combines label accuracy and evidence retrieval. Unlike FEVER 2018, FEVEROUS requires partial evidence to be returned for NotEnoughInfo claims, and the claims are longer and thus more complex. The shared task received 13 entries, six of which were able to beat the baseline system. The winning team was “Bust a move!”, achieving a FEVEROUS score of 27% (+9% compared to the baseline). In this paper we describe the shared task, present the full results and highlight commonalities and innovations among the participating systems.


How do Decisions Emerge across Layers in Neural Models? Interpretation with Differentiable Masking
Nicola De Cao | Michael Sejr Schlichtkrull | Wilker Aziz | Ivan Titov
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Attribution methods assess the contribution of inputs to the model prediction. One way to do so is erasure: a subset of inputs is considered irrelevant if it can be removed without affecting the prediction. Though conceptually simple, erasure’s objective is intractable and approximate search remains expensive with modern deep NLP models. Erasure is also susceptible to the hindsight bias: the fact that an input can be dropped does not mean that the model ‘knows’ it can be dropped. The resulting pruning is over-aggressive and does not reflect how the model arrives at the prediction. To deal with these challenges, we introduce Differentiable Masking. DiffMask learns to mask-out subsets of the input while maintaining differentiability. The decision to include or disregard an input token is made with a simple model based on intermediate hidden layers of the analyzed model. First, this makes the approach efficient because we predict rather than search. Second, as with probing classifiers, this reveals what the network ‘knows’ at the corresponding layers. This lets us not only plot attribution heatmaps but also analyze how decisions are formed across network layers. We use DiffMask to study BERT models on sentiment classification and question answering.